OpenAI (2023) ChatGPT (June 26 version) Large language model
Google AI (2023) Bard Large language model
Kimko HC, Duffull SB (2003) Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling perspective drugs and the pharmaceutical sciences, vol 127. Marcel Dekker, New York
Kimko HC, Peck CC, American Association of Pharmaceutical Scientists (2011) Clinical trial simulations: applications and trends. AAPS advances in the pharmaceutical sciences series, vol 1. AAPS Press, Springer, New York
Bonate PL, Barrett JS, Ait-Oudhia S, Brundage R, Corrigan B, Duffull S, Gastonguay M, Karlsson MO, Kijima S, Krause A, Lovern M, Neely M, Ouellet D, Plan EL, Rao GG, Standing J, Wilkins J, Zhu H (2023) Training the next generation of pharmacometric modelers: a multisector perspective. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-023-09878-4
Article PubMed PubMed Central Google Scholar
Michelet R, Aulin LBS, Borghardt JM, Costa TD, Denti P, Ibarra M, Ma G, Meibohm B, Pillai GC, Schmidt S, Hennig S, Kloft C (2023) Barriers to global pharmacometrics: educational challenges and opportunities across the globe. CPT Pharmacometrics Syst Pharmacol 12(6):743–747. https://doi.org/10.1002/psp4.12940
Article CAS PubMed PubMed Central Google Scholar
White J, Fu Q, Hays S, Sandborn M, Olea C, Gilbert H, Elnashar A, Spencer-Smith J, Schmidt DC (2023) A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv:2302:11382
Harrold JM, Abraham AK (2014) Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment. J Pharmacokinet Pharmacodyn 41(2):141–151. https://doi.org/10.1007/s10928-014-9352-6
Article CAS PubMed Google Scholar
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. Williams & Wilkins, Baltimore
Alkaissi H, McFarlane SI (2023) Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus J Med Sci 15(2):e35179. https://doi.org/10.7759/cureus.35179
Athaluri SA, Manthena SV, Kesapragada V, Yarlagadda V, Dave T, Duddumpudi RTS (2023) Exploring the boundaries of reality: investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. Cureus 15(4):e37432. https://doi.org/10.7759/cureus.37432
Article PubMed PubMed Central Google Scholar
Beutel G, Geerits E, Kielstein JT (2023) Artificial hallucination: GPT on LSD? Crit Care 27(1):148. https://doi.org/10.1186/s13054-023-04425-6
Article PubMed PubMed Central Google Scholar
Gabrielsson J, Weiner D (2007) Pharmacokinetic–pharmacodynamic data analysis: concepts and applications, 4th edn. Swedish Pharmaceutical Press, Stockholm
Gabrielsson J, Weiner D (2016) Pharmacokinetic–pharmacodynamic data analysis: concepts and applications, 5th edn. Swedish Pharmaceutical Press, Stockholm
Wickham H (2009) ggplot2: elegant graphics for data analysis. Use R:1–212. https://doi.org/10.1007/978-0-387-98141-3
Frieder S, Pinchetti L, Chevalier A, Griffiths R-R, Salvatori T, Lukasiewicz T, Petersen PC, Berner J (2023) Mathematical capabilities of ChatGPT. arXiv:2301.13867v13862
Yuan Z, Yuan H, Tan C, Wang W, Huang S (2023) How well do large language models perform in arithmetic tasks? arXiv:2304.02015
Nair R, Mohan DD, Frank S, Setlur S, Govindaraju V, Ramanathan M (2023) Generative adversarial networks for modelling clinical biomarker profiles with race/ethnicity. Br J Clin Pharmacol 89(5):1588–1600. https://doi.org/10.1111/bcp.15623
Nair R, Mohan DD, Setlur S, Govindaraju V, Ramanathan M (2023) Generative models for age, race/ethnicity, and disease state dependence of physiological determinants of drug dosing. J Pharmacokinet Pharmacodyn 50(2):111–122. https://doi.org/10.1007/s10928-022-09838-4
Article CAS PubMed Google Scholar
Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi EH, Le QV, Zhou D Chain-of-thought prompting elicits reasoning in large language models. In: 36th conference on neural information processing systems (NeurIPS 2022). New Orleans, LA, 2022. vol 1. NeuroIPS Foundation, pp xvi, 538
Shakarian P, Koyyalamudi A, Ngu N, Mareedu L (2023) An independent evaluation of ChatGPT on mathematical word problems (MWP). arXiv:2302.13814v13812
Chen J, Chen L, Huang H, Zhou T (2023) When do you need chain-of-thought prompting for ChatGPT? arXiv:2304.03262v03262
Cloesmeijer M, Janssen A, Koopman S, Cnossen M, Mathot R (2023) ChatGPT in pharmacometrics? Potential opportunities and limitations
Comments (0)