Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model

OpenAI (2023) ChatGPT (June 26 version) Large language model

Google AI (2023) Bard Large language model

Kimko HC, Duffull SB (2003) Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling perspective drugs and the pharmaceutical sciences, vol 127. Marcel Dekker, New York

Google Scholar 

Kimko HC, Peck CC, American Association of Pharmaceutical Scientists (2011) Clinical trial simulations: applications and trends. AAPS advances in the pharmaceutical sciences series, vol 1. AAPS Press, Springer, New York

Bonate PL, Barrett JS, Ait-Oudhia S, Brundage R, Corrigan B, Duffull S, Gastonguay M, Karlsson MO, Kijima S, Krause A, Lovern M, Neely M, Ouellet D, Plan EL, Rao GG, Standing J, Wilkins J, Zhu H (2023) Training the next generation of pharmacometric modelers: a multisector perspective. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-023-09878-4

Article  PubMed  PubMed Central  Google Scholar 

Michelet R, Aulin LBS, Borghardt JM, Costa TD, Denti P, Ibarra M, Ma G, Meibohm B, Pillai GC, Schmidt S, Hennig S, Kloft C (2023) Barriers to global pharmacometrics: educational challenges and opportunities across the globe. CPT Pharmacometrics Syst Pharmacol 12(6):743–747. https://doi.org/10.1002/psp4.12940

Article  CAS  PubMed  PubMed Central  Google Scholar 

White J, Fu Q, Hays S, Sandborn M, Olea C, Gilbert H, Elnashar A, Spencer-Smith J, Schmidt DC (2023) A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv:2302:11382

Harrold JM, Abraham AK (2014) Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment. J Pharmacokinet Pharmacodyn 41(2):141–151. https://doi.org/10.1007/s10928-014-9352-6

Article  CAS  PubMed  Google Scholar 

R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Google Scholar 

Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. Williams & Wilkins, Baltimore

Google Scholar 

Alkaissi H, McFarlane SI (2023) Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus J Med Sci 15(2):e35179. https://doi.org/10.7759/cureus.35179

Article  Google Scholar 

Athaluri SA, Manthena SV, Kesapragada V, Yarlagadda V, Dave T, Duddumpudi RTS (2023) Exploring the boundaries of reality: investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. Cureus 15(4):e37432. https://doi.org/10.7759/cureus.37432

Article  PubMed  PubMed Central  Google Scholar 

Beutel G, Geerits E, Kielstein JT (2023) Artificial hallucination: GPT on LSD? Crit Care 27(1):148. https://doi.org/10.1186/s13054-023-04425-6

Article  PubMed  PubMed Central  Google Scholar 

Gabrielsson J, Weiner D (2007) Pharmacokinetic–pharmacodynamic data analysis: concepts and applications, 4th edn. Swedish Pharmaceutical Press, Stockholm

Google Scholar 

Gabrielsson J, Weiner D (2016) Pharmacokinetic–pharmacodynamic data analysis: concepts and applications, 5th edn. Swedish Pharmaceutical Press, Stockholm

Google Scholar 

Wickham H (2009) ggplot2: elegant graphics for data analysis. Use R:1–212. https://doi.org/10.1007/978-0-387-98141-3

Frieder S, Pinchetti L, Chevalier A, Griffiths R-R, Salvatori T, Lukasiewicz T, Petersen PC, Berner J (2023) Mathematical capabilities of ChatGPT. arXiv:2301.13867v13862

Yuan Z, Yuan H, Tan C, Wang W, Huang S (2023) How well do large language models perform in arithmetic tasks? arXiv:2304.02015

Nair R, Mohan DD, Frank S, Setlur S, Govindaraju V, Ramanathan M (2023) Generative adversarial networks for modelling clinical biomarker profiles with race/ethnicity. Br J Clin Pharmacol 89(5):1588–1600. https://doi.org/10.1111/bcp.15623

Article  PubMed  Google Scholar 

Nair R, Mohan DD, Setlur S, Govindaraju V, Ramanathan M (2023) Generative models for age, race/ethnicity, and disease state dependence of physiological determinants of drug dosing. J Pharmacokinet Pharmacodyn 50(2):111–122. https://doi.org/10.1007/s10928-022-09838-4

Article  CAS  PubMed  Google Scholar 

Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi EH, Le QV, Zhou D Chain-of-thought prompting elicits reasoning in large language models. In: 36th conference on neural information processing systems (NeurIPS 2022). New Orleans, LA, 2022. vol 1. NeuroIPS Foundation, pp xvi, 538

Shakarian P, Koyyalamudi A, Ngu N, Mareedu L (2023) An independent evaluation of ChatGPT on mathematical word problems (MWP). arXiv:2302.13814v13812

Chen J, Chen L, Huang H, Zhou T (2023) When do you need chain-of-thought prompting for ChatGPT? arXiv:2304.03262v03262

Cloesmeijer M, Janssen A, Koopman S, Cnossen M, Mathot R (2023) ChatGPT in pharmacometrics? Potential opportunities and limitations

Comments (0)

No login
gif