Anashkin VA, Baykov AA (2021) A lumenal loop associated with catalytic asymmetry in plant vacuolar H(+)-translocating pyrophosphatase. Int J Mol Sci. https://doi.org/10.3390/ijms222312902
Article PubMed PubMed Central Google Scholar
Asaoka M, Segami S, Maeshima M (2014) Identification of the critical residues for the function of vacuolar H(+)-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem 156:333–344. https://doi.org/10.1093/jb/mvu046
Article CAS PubMed Google Scholar
Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240. https://doi.org/10.1016/j.plantsci.2008.10.009
Belogurov GA, Lahti R (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654. https://doi.org/10.1074/jbc.M210341200
Article CAS PubMed Google Scholar
Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242. https://doi.org/10.1021/pr049882h
Article CAS PubMed Google Scholar
Engen JR (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal Chem 81:7870–7875. https://doi.org/10.1021/ac901154s
Article CAS PubMed PubMed Central Google Scholar
Etxeberria E, Pozueta-Romero J, Gonzalez P (2012) In and out of the plant storage vacuole. Plant Sci 190:52–61. https://doi.org/10.1016/j.plantsci.2012.03.010
Article CAS PubMed Google Scholar
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. Febs Lett 581:2204–2214. https://doi.org/10.1016/j.febslet.2007.03.050
Article CAS PubMed Google Scholar
Hedrich R, Kurkdjian A, Guern J, Flugge UI (1989) Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J 8:2835–2841
Article CAS PubMed PubMed Central Google Scholar
Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004) Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1608:190–199. https://doi.org/10.1016/j.bbabio.2004.01.001
Article CAS PubMed Google Scholar
Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH et al (2007) Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1767:965–973. https://doi.org/10.1016/j.bbabio.2007.04.007
Article CAS PubMed Google Scholar
Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ et al (2015) Substrate-induced changes in domain interaction of vacuolar H(+)-pyrophosphatase. J Biol Chem 290:1197–1209. https://doi.org/10.1074/jbc.M114.568139
Article CAS PubMed Google Scholar
Huang YT, Liu TH, Chen YW, Lee CH, Chen HH, Huang TW et al (2010) Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer. J Biol Chem 285:23655–23664. https://doi.org/10.1074/jbc.M110.134916
Article CAS PubMed PubMed Central Google Scholar
Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M et al (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155:991–1002. https://doi.org/10.1083/jcb.200107012
Article CAS PubMed PubMed Central Google Scholar
Kan ZY, Ye X, Skinner JJ, Mayne L, Englander SW (2019) ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis. Anal Chem 91:7474–7481. https://doi.org/10.1021/acs.analchem.9b01682
Article CAS PubMed Google Scholar
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A (2012) The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337:473–476. https://doi.org/10.1126/science.1222505
Article CAS PubMed Google Scholar
Khadilkar AS, Yadav UP, Salazar C, Shulaev V, Paez-Valencia J, Pizzio GA et al (2016) Constitutive and companion cell-specific overexpression of AVP1, encoding a proton-pumping pyrophosphatase, enhances biomass accumulation, phloem loading, and long-distance transport. Plant Physiol 170:401–414. https://doi.org/10.1104/pp.15.01409
Article CAS PubMed Google Scholar
Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH et al (2011) Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J Biol Chem 286:11970–11976. https://doi.org/10.1074/jbc.M110.190215
Article CAS PubMed PubMed Central Google Scholar
Li KM, Wilkinson C, Kellosalo J, Tsai JY, Kajander T, Jeuken LJ et al (2016) Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 7:13596. https://doi.org/10.1038/ncomms13596
Article PubMed PubMed Central Google Scholar
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH et al (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403. https://doi.org/10.1038/nature10963
Article CAS PubMed Google Scholar
Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in Rice. J Plant Biol 53:444–452. https://doi.org/10.1007/s12374-010-9135-6
Luoto HH, Belogurov GA, Baykov AA, Lahti R, Malinen AM (2011) Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. J Biol Chem 286:21633–21642. https://doi.org/10.1074/jbc.M111.244483
Article CAS PubMed PubMed Central Google Scholar
Maeshima M (2000) Vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1465:37–51
Article CAS PubMed Google Scholar
Manabe F, Shoun H, Wakagi T (2011) Conserved residues in membrane-bound acid pyrophosphatase from Sulfolobus tokodaii, a thermoacidophilic archaeon. Extremophiles 15:359–364. https://doi.org/10.1007/s00792-011-0367-2
Article CAS PubMed Google Scholar
Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102. https://doi.org/10.1093/jxb/erl183
Article CAS PubMed Google Scholar
Mimura H, Nakanishi Y, Maeshima M (2005) Oligomerization of H(+)-pyrophosphatase and its structural and functional consequences. Biochim Biophys Acta 1708:393–403. https://doi.org/10.1016/j.bbabio.2005.05.004
Article CAS PubMed Google Scholar
Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276:7654–7660. https://doi.org/10.1074/jbc.M009743200
Article CAS PubMed Google Scholar
Segami S, Nakanishi Y, Sato MH, Maeshima M (2010) Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. Plant Cell Physiol 51:1350–1360. https://doi.org/10.1093/pcp/pcq096
Article CAS PubMed Google Scholar
Serrano A, Perez-Castineira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59:76–83. https://doi.org/10.1080/15216540701258132
Article CAS PubMed Google Scholar
Tsai JY, Tang KZ, Li KM, Hsu BL, Chiang YW, Goldman A et al (2019) Roles of the hydrophobic gate and exit channel in vigna radiata pyrophosphatase ion translocation. J Mol Biol 431:1619–1632. https://doi.org/10.1016/j.jmb.2019.03.009
Article CAS PubMed Google Scholar
Vidilaseris K, Kiriazis A, Turku A, Khattab A, Johansson NG, Leino TO et al (2019) Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. Sci Adv 5:eaav7574. https://doi.org/10.1126/sciadv.aav7574
Article CAS PubMed PubMed Central Google Scholar
Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL (2004) Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1656:88–95. https://doi.org/10.1016/j.bbabio.2004.02.001
Comments (0)