van der Mark SC, Hoek RAS, Hellemons ME (2020) Developments in lung transplantation over the past decade. Eur Respir Rev. https://doi.org/10.1183/16000617.0132-2019
Article PubMed PubMed Central Google Scholar
Trachuk P, Bartash R, Abbasi M, Keene A (2020) Infectious complications in lung transplant recipients. Lung 198:879–887. https://doi.org/10.1007/s00408-020-00403-9
Article PubMed PubMed Central Google Scholar
Graham CN, Watson C, Barlev A, Stevenson M, Dharnidharka VR (2022) Mean lifetime survival estimates following solid organ transplantation in the US and UK. J Med Econ 25:230–237. https://doi.org/10.1080/13696998.2022.2033050
Assadiasl S, Nicknam MH (2022) Cytokines in Lung Transplantation. Lung 200:793–806. https://doi.org/10.1007/s00408-022-00588-1
Article CAS PubMed Google Scholar
Todd JL, Neely ML, Kopetskie H, Sever ML, Kirchner J, Frankel CW, Snyder LD, Pavlisko EN, Martinu T, Tsuang W, Shino MY, Williams N, Robien MA, Singer LG, Budev M, Shah PD, Reynolds JM, Palmer SM, Belperio JA, Weigt SS (2020) Risk factors for acute rejection in the first year after lung transplant. A multicenter study. Am J Respir Crit Care Med 202:576–585. https://doi.org/10.1164/rccm.201910-1915OC
Article PubMed PubMed Central Google Scholar
Swaminathan AC, Todd JL, Palmer SM (2021) Advances in human lung transplantation. Annu Rev Med 72:135–149. https://doi.org/10.1146/annurev-med-080119-103200
Article CAS PubMed Google Scholar
Armati M, Cattelan S, Guerrieri M, Messina M, Perea B, Genovese M, d’Alessandro M, Gangi S, Cameli P, Perillo F, Bennett D, Fossi A, Bargagli E, Bergantini L, Tuscany Transplant G (2023) Collagen type IV alpha 5 chain in bronchiolitis obliterans syndrome after lung transplant: the first evidence. Lung. https://doi.org/10.1007/s00408-023-00632-8
Article PubMed PubMed Central Google Scholar
d’Alessandro M, Bergantini L, Fossi A, De Vita E, Perillo F, Luzzi L, Paladini P, Sestini P, Rottoli P, Bargagli E, Bennett D (2021) The role of galectins in chronic lung allograft dysfunction. Lung 199:281–288. https://doi.org/10.1007/s00408-021-00449-3
Article PubMed PubMed Central Google Scholar
Maher SA, Belvisi MG (2010) Prostanoids and the cough reflex. Lung 188:9–12. https://doi.org/10.1007/s00408-009-9190-2
Wanders A, Tufveson G, Gerdin B (1992) Effects of prostaglandin E2 (PGE2) and drugs affecting PGE2 degradation on acute rejection of rat cardiac allografts. Scand J Thorac Cardiovasc Surg 26:33–37. https://doi.org/10.3109/14017439209099050
Article CAS PubMed Google Scholar
Fujimoto Y, Iwagaki H, Ozaki M, Ogino T, Murata H, Sun DS, Sadamori H, Takahashi HK, Tanaka N, Yagi T (2005) Involvement of prostaglandin receptors (EPR2-4) in in vivo immunosuppression of PGE2 in rat skin transplant model. Int Immunopharmacol 5:1131–1139. https://doi.org/10.1016/j.intimp.2005.01.014
Article CAS PubMed Google Scholar
Ogawa M, Suzuki J, Kosuge H, Takayama K, Nagai R, Isobe M (2009) The mechanism of anti-inflammatory effects of prostaglandin E2 receptor 4 activation in murine cardiac transplantation. Transplantation 87:1645–1653. https://doi.org/10.1097/TP.0b013e3181a5c84c
Article CAS PubMed Google Scholar
Cheng H, Huang H, Guo Z, Chang Y, Li Z (2021) Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 11:8836–8854. https://doi.org/10.7150/thno.63396
Article CAS PubMed PubMed Central Google Scholar
Huang W, Li H, Kiselar J, Fink SP, Regmi S, Day A, Yuan Y, Chance M, Ready JM, Markowitz SD, Taylor DJ (2023) Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nat Commun 14:784. https://doi.org/10.1038/s41467-023-36463-7
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, Tiwari S, Willis JE, Williams NS, Dawson DM, Wald D, Chen WD, Wang Z, Kasturi L, Larusch GA, He L, Cominelli F, Di Martino L, Djuric Z, Milne GL, Chance M, Sanabria J, Dealwis C, Mikkola D, Naidoo J, Wei S, Tai HH, Gerson SL, Ready JM, Posner B, Willson JK, Markowitz SD (2015) Tissue regeneration. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 348:aaa2340. https://doi.org/10.1126/science.aaa2340
Article CAS PubMed PubMed Central Google Scholar
Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, Holbrook CA, Schurch CM, Ho ATV, Blau HM (2021) Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science. https://doi.org/10.1126/science.abc8059
Smith JN, Dawson DM, Christo KF, Jogasuria AP, Cameron MJ, Antczak MI, Ready JM, Gerson SL, Markowitz SD, Desai AB (2021) 15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration. JCI Insight. https://doi.org/10.1172/jci.insight.143658
Article PubMed PubMed Central Google Scholar
Smith JNP, Witkin MD, Jogasuria AP, Christo KF, Raffay TM, Markowitz SD, Desai AB (2020) Therapeutic targeting of 15-PGDH in murine pulmonary fibrosis. Sci Rep 10:11657. https://doi.org/10.1038/s41598-020-68336-0
Article CAS PubMed PubMed Central Google Scholar
Barnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, Klepetko W, Sinn K, Flick H, Scheidl S, Thomas D, Olschewski H, Kwapiszewska G, Schuligoi R, Heinemann A (2020) Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 145(818–833):e811. https://doi.org/10.1016/j.jaci.2019.11.032
Rubino M, Travers JG, Headrick AL, Enyart BT, Lemieux ME, Cavasin MA, Schwisow JA, Hardy EJ, Kaltenbacher KJ, Felisbino MB, Jonas E, Ambardekar AV, Bristow MR, Koch KA, McKinsey TA (2023) Inhibition of eicosanoid degradation mitigates fibrosis of the heart. Circ Res 132:10–29. https://doi.org/10.1161/CIRCRESAHA.122.321475
Article CAS PubMed Google Scholar
Cui Y, Liu K, Monzon-Medina ME, Padera RF, Wang H, George G, Toprak D, Abdelnour E, D’Agostino E, Goldberg HJ, Perrella MA, Forteza RM, Rosas IO, Visner G, El-Chemaly S (2015) Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection. J Clin Invest 125:4255–4268. https://doi.org/10.1172/JCI79693
Article PubMed PubMed Central Google Scholar
Imani J, Liu K, Cui Y, Assaker JP, Han J, Ghosh AJ, Ng J, Shrestha S, Lamattina AM, Louis PH, Hentschel A, Esposito AJ, Rosas IO, Liu X, Perrella MA, Azzi J, Visner G, El-Chemaly S (2021) Blocking hyaluronan synthesis alleviates acute lung allograft rejection. JCI Insight. https://doi.org/10.1172/jci.insight.142217
Article PubMed PubMed Central Google Scholar
Maeyashiki T, Jang J-H, Janker F, Yamada Y, Inci I, Weder W, Piegeler T, Jungraithmayr W (2019) The amide local anesthetic ropivacaine attenuates acute rejection after allogeneic mouse lung transplantation. Lung 197:217–226. https://doi.org/10.1007/s00408-019-00197-5
Article CAS PubMed Google Scholar
Issa F, Schiopu A, Wood KJ (2010) Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol 6:155–169. https://doi.org/10.1586/eci.09.64
Article CAS PubMed Google Scholar
Liu H, Liu L, Liu K, Bizargity P, Hancock WW, Visner GA (2009) Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J Immunol 183:1022–1031. https://doi.org/10.4049/jimmunol.0900408
Article CAS PubMed Google Scholar
Varanasi SK, Ma S, Kaech SM (2019) T cell metabolism in a state of flux. Immunity 51:783–785. https://doi.org/10.1016/j.immuni.2019.10.012
Article CAS PubMed Google Scholar
Yap M, Brouard S, Pecqueur C, Degauque N (2015) Targeting CD8 T-cell metabolism in transplantation. Front Immunol 6:547. https://doi.org/10.3389/fimmu.2015.00547
Article PubMed PubMed Central Google Scholar
Desdin-Mico G, Soto-Heredero G, Mittelbrunn M (2018) Mitochondrial activity in T cells. Mitochondrion 41:51–57. https://doi.org/10.1016/j.mito.2017.10.006
Article CAS PubMed Google Scholar
Lisci M, Griffiths GM (2023) Arming a killer: mitochondrial regulation of CD8(+) T cell cytotoxicity. Trends Cell Biol 33:138–147. https://doi.org/10.1016/j.tcb.2022.05.007
Article CAS PubMed Google Scholar
Cui Y, Chen G, Yang Z (2020) Mitochondrial superoxide mediates PM(2.5)-induced cytotoxicity in human pulmonary lymphatic endothelial cells. Environ Pollut 263:114423. https://doi.org/10.1016/j.envpol.2020.114423
Article CAS PubMed Google Scholar
Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, Pretlow TP, Newman RA, Willis J, Dawson D, Markowitz SD (2006) 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 103:12098–12102. https://doi.org/10.1073/pnas.0603235103
Comments (0)