Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health — a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive Preventive and Personalised Medicine. EPMA J. 2021. https://doi.org/10.1007/s13167-021-00253-2.
Article PubMed PubMed Central Google Scholar
International Diabetes Federation, IDF Diabetes Atlas. 2015. http://www.diabetesatlas.org/resources/2015-atlas.html. Accessed 04 June 2023.
Candrilli S, Meyers J, Boye K, Bae J. Health care resource utilization and costs during episodes of care for type 2 diabetes mellitus-related comorbidities. J Diabetes Complicat. 2015. https://doi.org/10.1016/j.jdiacomp.2014.12.009.
Yan YX, Liu Y-Q, Li M, Hu P-F, Guo A-M, Yang X-H, et al. Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J Epidemiol. 2009. https://doi.org/10.2188/jea.JE20080086.
Article PubMed PubMed Central Google Scholar
Wang W, Yan Y. Suboptimal health: a new health dimension for translational medicine. Clin Transl Med. 2012. https://doi.org/10.1186/2001-1326-1-28.
Article PubMed PubMed Central Google Scholar
Yan YX, Dong J, Liu YQ, Yang XH, Li M, Shia G, Wang W. Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health. 2012. https://doi.org/10.1007/s11524-011-9636-8.
Adua E, Roberts P, Wang W. Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: a case-control study in a Ghanaian population. EPMA J. 2017. https://doi.org/10.1007/s13167-017-0119-1.
Article PubMed PubMed Central Google Scholar
Adua E, Roberts P, Sakyi SA, Yeboah FA, Dompreh A, Frimpong K, et al. Profiling of cardio-metabolic risk factors and medication utilisation among Type II diabetes patients in Ghana: a prospective cohort study. Clin Transl Med. 2017. https://doi.org/10.1186/s40169-017-0162-5.
Article PubMed PubMed Central Google Scholar
DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011. https://doi.org/10.2337/dc11-s221.
Article PubMed PubMed Central Google Scholar
Cox ME, Feinglos MN. Risk vs benefit in diabetes pharmacotherapy: a rational approach to choosing pharmacotherapy in type 2 diabetes. Curr Diabetes Rep. 2013. https://doi.org/10.1007/s11892-013-0374-z.
Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation-EPMA position paper 2016. EPMA J. 2016. https://doi.org/10.1186/s13167-016-0072-4.
Article PubMed PubMed Central Google Scholar
Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014. https://doi.org/10.1186/1878-5085-5-6.
Article PubMed PubMed Central Google Scholar
Obirikorang Y, Acheampong E, Anto EO, Afrifa-Yamoah E, Adua E, Taylor J, et al. Nexus between constructs of social cognitive theory model and diabetes self-management among Ghanaian diabetic patients: a mediation modelling approach. Plos Glob Public Health. 2022. https://doi.org/10.1371/journal.pgph.0000736.
Article PubMed PubMed Central Google Scholar
Wang W, Russel A, Yan Y, Global Health Epidemiology Reference Group (GHERG). Traditional Chinese medicine and new concepts of predictive, preventive and personalised medicine in diagnosis and treatment of suboptimal health. EPMA J. 2014. https://doi.org/10.1186/1878-5085-5-4.
Article PubMed PubMed Central Google Scholar
Kupaev V, Borisov O, Marutina E, Yan Y-X, Wang W. Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease. EPMA J. 2016. https://doi.org/10.1186/s13167-016-0068-0.
Article PubMed PubMed Central Google Scholar
Guo Z, Meng R, Zheng Y, Li X, Zhou Z, Yu L, et al. Translation and cross-cultural validation of a precision health tool, the Suboptimal Health Status Questionnaire-25, in Korean. J Glob Health. 2022. https://doi.org/10.7189/jogh.12.04077.
Article PubMed PubMed Central Google Scholar
Anto EO, Coall DA, Addai-Mensah O, Wiafe YA, Owiredu WKBA, Obirikorang C, et al. Early gestational profiling of oxidative stress and angiogenic growth mediators as predictive, preventive and personalised (3P) medical approach to identify suboptimal health pregnant mothers likely to develop preeclampsia. EPMA J. 2021. https://doi.org/10.1007/s13167-021-00258-x.
Article PubMed PubMed Central Google Scholar
Anto EO, Roberts P, Coall D, Turpin CA, Adua E, Wang Y, Wang W. Integration of suboptimal health status evaluation as a criterion for prediction of preeclampsia is strongly recommended for healthcare management in pregnancy: a prospective cohort study in a Ghanaian population. EPMA J. 2019. https://doi.org/10.1007/s13167-019-00183-0.
Article PubMed PubMed Central Google Scholar
Ge S, Xu X, Zhang J, Hou H, Wang H, Liu D, et al. Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study. EPMA J. 2019. https://doi.org/10.1007/s13167-019-0159-9.
Article PubMed PubMed Central Google Scholar
Hou H, Feng X, Li Y, Meng Z, Guo D, Wang F, et al. Suboptimal health status and psychological symptoms among Chinese college students: a perspective of predictive, preventive and personalised health. EPMA J. 2018. https://doi.org/10.1007/s13167-018-0148-4.
Article PubMed PubMed Central Google Scholar
Yan YX, Wu LJ, Xiao HB, Wang S, Dong J, Wang W. Latent class analysis to evaluate performance of plasma cortisol, plasma catecholamines, and SHSQ-25 for early recognition of suboptimal health status. EPMA J. 2018. https://doi.org/10.1007/s13167-018-0144-8.
Article PubMed PubMed Central Google Scholar
Wang H, Tian Q, Zhang J, Liu H, Zhang X, Cao W, et al. Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population—potential utility for innovative approach by predictive, preventive, and personalized medicine. EPMA J. 2020. https://doi.org/10.1007/s13167-020-00200-7.
Article PubMed PubMed Central Google Scholar
Adua E, Kolog EA, Afrifa-Yamoah E, Amankwah B, Obirikorang C, Anto EO, et al. Predictive model and feature importance for early detection of type II diabetes mellitus. Transl Med Commun. 2021. https://doi.org/10.1186/s41231-021-00096-z.
Jeong E, Ko K, Oh S, Han HW. Network-based analysis of diagnosis progression patterns using claims data. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-15647-4.
Article PubMed PubMed Central Google Scholar
Higa S, Nozowa K, Karasawa Y, Shirai C, Matsuyama S, Yamamoto Y, Laurent T, Asami Y. The use of a network analysis to identify associations and temporal patterns among non-communicable diseases in Japan based on large medical claims database. Drugs – Real Wor Outc. 2022. https://doi.org/10.1007/s40801-022-00310-w.
Spechbach H, Jacquerioz F, Prendki V, Kaiser L, Smit M, Calmy A, Chappuis F, Guessous I, Salamun J, Baggio S. Network analysis of outpatients to identify predictive symptoms and combinations of symptoms associated with positive/negative SARS-CoV-2 nasopharyngeal swabs. Front Med. 2021. https://doi.org/10.3389/fmed.2021.685124.
Rustamaji HC, Suharini YS, Permana AA, Kususma WA, Nurdiati S, Batubara I, Djatna T. A network analysis to identify lung cancer comorbid diseases. Appl Netw Sci. 2022. https://doi.org/10.1007/s41109-022-00466-y.
Nordahl H, Anyan F, Hjemdal O, Wells A. The network structure of dysfunctional metacognition: analysis of the MCQ-30. Acta Psychol. 2022. https://doi.org/10.1016/j.actpsy.2022.103622.
McNally RJ, Robinaugh DJ, Wu GWY, Wang L, Deserno MK, Borsboom D. Mental disorders as causal systems: a network approach to posttraumatic stress disorder. Clin Psychol Sci. 2015. https://doi.org/10.1177/2167702614553230.
Wang Y, Liu X, Qui J, Wang H, Liu D, Zhao Z, et al. Association between ideal cardiovascular health metrics and suboptimal health status in Chinese population. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-15101-5.
Article PubMed PubMed Central Google Scholar
Rue H, Held L. Gaussian Markov Random Fields. Chapman & Hall/CRC: Taylor & Francis Group; 2005.
Newman MEJ. Networks: an introduction. Oxford: Oxford University Press; 2010.
Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods. 2017. https://doi.org/10.3758/s13428-017-0862-1.
Article PubMed Central Google Scholar
Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. 2008. https://doi.org/10.1093/biomet/asn034.
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008. https://doi.org/10.1093/biostatistics/kxm045.
Jones PJ, Mair P, McNally RJ. Visualizing psychological networks: a tutorial in R. Front Psychol. 2018. https://doi.org/10.3389/fpsyg.2018.01742.
Article PubMed PubMed Central Google Scholar
Barber FR, Drton M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electron J Stat. 2015. https://doi.org/10.1214/15-EJS1012
Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. Qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012. https://doi.org/10.18637/jss.v048.i04.
Comments (0)