Conceptualised psycho-medical footprint for health status outcomes and the potential impacts for early detection and prevention of chronic diseases in the context of 3P medicine

Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health — a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive Preventive and Personalised Medicine. EPMA J. 2021. https://doi.org/10.1007/s13167-021-00253-2.

Article  PubMed  PubMed Central  Google Scholar 

International Diabetes Federation, IDF Diabetes Atlas. 2015. http://www.diabetesatlas.org/resources/2015-atlas.html. Accessed 04 June 2023.

Candrilli S, Meyers J, Boye K, Bae J. Health care resource utilization and costs during episodes of care for type 2 diabetes mellitus-related comorbidities. J Diabetes Complicat. 2015. https://doi.org/10.1016/j.jdiacomp.2014.12.009.

Article  Google Scholar 

Yan YX, Liu Y-Q, Li M, Hu P-F, Guo A-M, Yang X-H, et al. Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J Epidemiol. 2009. https://doi.org/10.2188/jea.JE20080086.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Yan Y. Suboptimal health: a new health dimension for translational medicine. Clin Transl Med. 2012. https://doi.org/10.1186/2001-1326-1-28.

Article  PubMed  PubMed Central  Google Scholar 

Yan YX, Dong J, Liu YQ, Yang XH, Li M, Shia G, Wang W. Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health. 2012. https://doi.org/10.1007/s11524-011-9636-8.

Article  PubMed  Google Scholar 

Adua E, Roberts P, Wang W. Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: a case-control study in a Ghanaian population. EPMA J. 2017. https://doi.org/10.1007/s13167-017-0119-1.

Article  PubMed  PubMed Central  Google Scholar 

Adua E, Roberts P, Sakyi SA, Yeboah FA, Dompreh A, Frimpong K, et al. Profiling of cardio-metabolic risk factors and medication utilisation among Type II diabetes patients in Ghana: a prospective cohort study. Clin Transl Med. 2017. https://doi.org/10.1186/s40169-017-0162-5.

Article  PubMed  PubMed Central  Google Scholar 

DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011. https://doi.org/10.2337/dc11-s221.

Article  PubMed  PubMed Central  Google Scholar 

Cox ME, Feinglos MN. Risk vs benefit in diabetes pharmacotherapy: a rational approach to choosing pharmacotherapy in type 2 diabetes. Curr Diabetes Rep. 2013. https://doi.org/10.1007/s11892-013-0374-z.

Article  Google Scholar 

Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation-EPMA position paper 2016. EPMA J. 2016. https://doi.org/10.1186/s13167-016-0072-4.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014. https://doi.org/10.1186/1878-5085-5-6.

Article  PubMed  PubMed Central  Google Scholar 

Obirikorang Y, Acheampong E, Anto EO, Afrifa-Yamoah E, Adua E, Taylor J, et al. Nexus between constructs of social cognitive theory model and diabetes self-management among Ghanaian diabetic patients: a mediation modelling approach. Plos Glob Public Health. 2022. https://doi.org/10.1371/journal.pgph.0000736.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Russel A, Yan Y, Global Health Epidemiology Reference Group (GHERG). Traditional Chinese medicine and new concepts of predictive, preventive and personalised medicine in diagnosis and treatment of suboptimal health. EPMA J. 2014. https://doi.org/10.1186/1878-5085-5-4.

Article  PubMed  PubMed Central  Google Scholar 

Kupaev V, Borisov O, Marutina E, Yan Y-X, Wang W. Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease. EPMA J. 2016. https://doi.org/10.1186/s13167-016-0068-0.

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Meng R, Zheng Y, Li X, Zhou Z, Yu L, et al. Translation and cross-cultural validation of a precision health tool, the Suboptimal Health Status Questionnaire-25, in Korean. J Glob Health. 2022. https://doi.org/10.7189/jogh.12.04077.

Article  PubMed  PubMed Central  Google Scholar 

Anto EO, Coall DA, Addai-Mensah O, Wiafe YA, Owiredu WKBA, Obirikorang C, et al. Early gestational profiling of oxidative stress and angiogenic growth mediators as predictive, preventive and personalised (3P) medical approach to identify suboptimal health pregnant mothers likely to develop preeclampsia. EPMA J. 2021. https://doi.org/10.1007/s13167-021-00258-x.

Article  PubMed  PubMed Central  Google Scholar 

Anto EO, Roberts P, Coall D, Turpin CA, Adua E, Wang Y, Wang W. Integration of suboptimal health status evaluation as a criterion for prediction of preeclampsia is strongly recommended for healthcare management in pregnancy: a prospective cohort study in a Ghanaian population. EPMA J. 2019. https://doi.org/10.1007/s13167-019-00183-0.

Article  PubMed  PubMed Central  Google Scholar 

Ge S, Xu X, Zhang J, Hou H, Wang H, Liu D, et al. Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study. EPMA J. 2019. https://doi.org/10.1007/s13167-019-0159-9.

Article  PubMed  PubMed Central  Google Scholar 

Hou H, Feng X, Li Y, Meng Z, Guo D, Wang F, et al. Suboptimal health status and psychological symptoms among Chinese college students: a perspective of predictive, preventive and personalised health. EPMA J. 2018. https://doi.org/10.1007/s13167-018-0148-4.

Article  PubMed  PubMed Central  Google Scholar 

Yan YX, Wu LJ, Xiao HB, Wang S, Dong J, Wang W. Latent class analysis to evaluate performance of plasma cortisol, plasma catecholamines, and SHSQ-25 for early recognition of suboptimal health status. EPMA J. 2018. https://doi.org/10.1007/s13167-018-0144-8.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, Tian Q, Zhang J, Liu H, Zhang X, Cao W, et al. Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population—potential utility for innovative approach by predictive, preventive, and personalized medicine. EPMA J. 2020. https://doi.org/10.1007/s13167-020-00200-7.

Article  PubMed  PubMed Central  Google Scholar 

Adua E, Kolog EA, Afrifa-Yamoah E, Amankwah B, Obirikorang C, Anto EO, et al. Predictive model and feature importance for early detection of type II diabetes mellitus. Transl Med Commun. 2021. https://doi.org/10.1186/s41231-021-00096-z.

Article  Google Scholar 

Jeong E, Ko K, Oh S, Han HW. Network-based analysis of diagnosis progression patterns using claims data. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-15647-4.

Article  PubMed  PubMed Central  Google Scholar 

Higa S, Nozowa K, Karasawa Y, Shirai C, Matsuyama S, Yamamoto Y, Laurent T, Asami Y. The use of a network analysis to identify associations and temporal patterns among non-communicable diseases in Japan based on large medical claims database. Drugs – Real Wor Outc. 2022. https://doi.org/10.1007/s40801-022-00310-w.

Article  Google Scholar 

Spechbach H, Jacquerioz F, Prendki V, Kaiser L, Smit M, Calmy A, Chappuis F, Guessous I, Salamun J, Baggio S. Network analysis of outpatients to identify predictive symptoms and combinations of symptoms associated with positive/negative SARS-CoV-2 nasopharyngeal swabs. Front Med. 2021. https://doi.org/10.3389/fmed.2021.685124.

Article  Google Scholar 

Rustamaji HC, Suharini YS, Permana AA, Kususma WA, Nurdiati S, Batubara I, Djatna T. A network analysis to identify lung cancer comorbid diseases. Appl Netw Sci. 2022. https://doi.org/10.1007/s41109-022-00466-y.

Article  Google Scholar 

Nordahl H, Anyan F, Hjemdal O, Wells A. The network structure of dysfunctional metacognition: analysis of the MCQ-30. Acta Psychol. 2022. https://doi.org/10.1016/j.actpsy.2022.103622.

Article  Google Scholar 

McNally RJ, Robinaugh DJ, Wu GWY, Wang L, Deserno MK, Borsboom D. Mental disorders as causal systems: a network approach to posttraumatic stress disorder. Clin Psychol Sci. 2015. https://doi.org/10.1177/2167702614553230.

Article  Google Scholar 

Wang Y, Liu X, Qui J, Wang H, Liu D, Zhao Z, et al. Association between ideal cardiovascular health metrics and suboptimal health status in Chinese population. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-15101-5.

Article  PubMed  PubMed Central  Google Scholar 

Rue H, Held L. Gaussian Markov Random Fields. Chapman & Hall/CRC: Taylor & Francis Group; 2005.

Newman MEJ. Networks: an introduction. Oxford: Oxford University Press; 2010.

Book  Google Scholar 

Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods. 2017. https://doi.org/10.3758/s13428-017-0862-1.

Article  PubMed Central  Google Scholar 

Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. 2008. https://doi.org/10.1093/biomet/asn034.

Article  Google Scholar 

Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008. https://doi.org/10.1093/biostatistics/kxm045.

Article  PubMed  Google Scholar 

Jones PJ, Mair P, McNally RJ. Visualizing psychological networks: a tutorial in R. Front Psychol. 2018. https://doi.org/10.3389/fpsyg.2018.01742.

Article  PubMed  PubMed Central  Google Scholar 

Barber FR, Drton M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electron J Stat. 2015. https://doi.org/10.1214/15-EJS1012

Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. Qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012. https://doi.org/10.18637/jss.v048.i04.

Article 

Comments (0)

No login
gif