Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8:190–209.
Article CAS PubMed Google Scholar
Lutzu GA, Zhang L, Zhang Z, Liu T. Feasibility of attached cultivation for polysaccharides production by porphyridium cruentum. Bioprocess Biosyst Eng. 2017;40:73–83.
Article CAS PubMed Google Scholar
Parsaeimehr A, Lutzu G. Algae as a novel source of antimicrobial compounds: current and future perspectives (1st ed; Kon, K, Rai, M, Eds). Antibiot Resist. 2016;18:377–413.
Lutzu GA, Turgut Dunford N. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Journal [serial on the Internet]. 2018;23(8): Available from: http://europepmc.org/abstract/MED/29293446, https://doi.org/10.2741/4656.
Torzillo G, Vonshak A. Handbook of microalgal culture: applied phycology and biotechnology, Second Edition. 2013. p. 90–113.
Neyrinck AM, Taminiau B, Walgrave H, Daube G, Cani PD, Bindels LB, et al. Spirulina protects against hepatic inflammation in aging: an effect related to the modulation of the gut microbiota? Nutrients. 2017;9:633.
Article PubMed PubMed Central Google Scholar
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL. Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutrients. 2021;13(2):563.
Article CAS PubMed PubMed Central Google Scholar
Bito T, Okumura E, Fujishima M, Watanabe F. Potential of chlorella as a dietary supplement to promote human health. Journal [serial on the Internet]. 2020;12(9):2524.
Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8:2672–85.
Article CAS PubMed Google Scholar
Becker W. Microalgae in human and animal nutrition. Handbook of Microalgal Culture; 2003. p. 312–51.
Ampofo J, Abbey L. Microalgae: bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods. 2022;11(12):17–44.
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina microalgae and brain health: a scoping review of experimental and clinical evidence. Mar Drugs. 2021;19(6):293.
Article CAS PubMed PubMed Central Google Scholar
Moradi-Kor N, Ghanbari A, Rashidipour H, Yousefi B, Bandegi AR, Rashidy-Pour A. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats. Horm Behav. 2019;112:20–31.
Article CAS PubMed Google Scholar
Zhu HZ, Zhang Y, Zhu MJ, Wu RL, Zeng ZG. Protective effects of spirulina on hippocampal injury in exercise-fatigue mice and its mechanism. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chin J Appl Physiol. 2018;34:562–7.
Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, et al. Caution, “normal” BMI: health risks associated with potentially masked individual underweight—EPMA Position Paper 2021. EPMA J. 2021;12:243–64.
Article PubMed PubMed Central Google Scholar
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, et al. Cell-free nucleic acid patterns in disease prediction and monitoring—hype or hope? EPMA J. 2020;11:603–27.
Article PubMed PubMed Central Google Scholar
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, et al. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care—clinically relevant 3PM innovation. EPMA J. 2024;15:163–205.
Article PubMed PubMed Central Google Scholar
Xiao Y, Xiao X, Zhang X, Yi D, Li T, Hao Q, et al. Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: evidence, potential mechanisms, and prospects. EPMA J. 2024;15:207–20.
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10:365–81.
Article PubMed PubMed Central Google Scholar
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, et al. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021;12:477–505.
Article PubMed PubMed Central Google Scholar
Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, Al-Ishaq R, et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. 2021;12:559–87.
Article PubMed PubMed Central Google Scholar
Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13:177–93.
Article PubMed PubMed Central Google Scholar
Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, et al. Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Journal [serial on the Internet]. 2019;11(6):1226.
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, et al. Microalgae produce antioxidant molecules with potential preventive effects on mitochondrial functions and skeletal muscular oxidative stress. Journal [serial on the Internet]. 2023;12(5):1050.
Mukherjee S, Mohanty AK, Rao U, Poddar A. Microbial polyunsaturated fatty acids (PUFAs) for human health: a comprehensive review of evidence from in vivo preclinical models. Discov Appl Sci. 2024;6:524.
Goshtasbi H, Okolodkov YB, Movafeghi A, Awale S, Safary A, Barar J, et al. Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal Res. 2023;74:103237.
Shariat A, Abbasalizad Farhangi M, Zeinalian R. Spirulina platensis supplementation, macrophage inhibitory cytokine-1 (MIC-1), oxidative stress markers and anthropometric features in obese individuals: a randomized controlled trial. J Herb Med. 2019;17–18:100264.
Koite NDL, Sanogo NgI, Lépine O, Bard J-M, Ouguerram K. Antioxidant efficacy of a spirulina liquid extract on oxidative stress status and metabolic disturbances in subjssects with metabolic syndrome. Journal [serial on the Internet]. 2022;20(7):441.
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Journal [serial on the Internet]. 2015;13(10):6152–209.
Parameswari RP, Lakshmi T. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J Biotechnol. 2022;358:128–39.
Article CAS PubMed Google Scholar
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina microalgae and brain health: a scoping review of experimental and clinical evidence. Journal [serial on the Internet]. 2021;19(6):293.
Rodrigues F, Reis M, Ferreira L, Grosso C, Ferraz R, Vieira M, et al. The neuroprotective role of cyanobacteria with focus on the anti-inflammatory and antioxidant potential: current status and perspectives. Journal [serial on the Internet]. 2024;29(20):4799.
Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol. 2021;182:1371–83.
Article CAS PubMed Google Scholar
Yang Z, Wang H, Liu N, Zhao K, Sheng Y, Pang H, et al. Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases. Food Funct. 2022;13:11387–409.
Article CAS PubMed Google Scholar
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, et al. Microalgal lipid extracts have potential to modulate the inflammatory response: a critical review. Journal [serial on the Internet]. 2021;22(18):9825.
Paranthaman S, Palraj P. Bioactive compounds of algae: potential neuroprotective agents in neurodegenerative disorders. In: Pathak S, Banerjee A, editors. Neuroprotective Effects of Phytochemicals in Brain Ageing. Singapore: Springer Nature Singapore; 2024. p. 257–88.
Barbalace MC, Malaguti M, Giusti L, Lucacchini A, Hrelia S, Angeloni C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Journal [serial on the Internet]. 2019;20(12).
Thoré ESJ, Muylaert K, Bertram MG, Brodin T. Microalgae. Curr Biol: CB. 2023;33:R91–5.
Arad SM, Levy-Ontman O. Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol. 2010;21:358–64.
Article CAS PubMed Google Scholar
Williams PJlB, Laurens LM. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3:554–90.
Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E, Nihei S, et al. Some Cyanobacteria synthesize semi-amylopectin type alpha-polyglucans instead of glycogen. Plant Cell Physiol. 2005;46:539–45.
Article CAS PubMed Google Scholar
Busi MV, Barchiesi J, Martín M, Gomez-Casati DF. Starch metabolism in green algae. Starch-Stärke. 2014;66:28–40.
McCracken D, Cain J. Amylose in floridean starch. New Phytol. 1981;88:67–71.
Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs. 2015;13:5993–6018.
Comments (0)