The anti-inflammatory and immunological properties of SGLT-2 inhibitors

Bendotti G, Montefusco L, Lunati ME et al (2022) The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106320

Article  PubMed  Google Scholar 

Zelniker TA, Braunwald E (2020) Mechanisms of cardiorenal effects of sodium–glucose cotransporter 2 inhibitors. JACC 75:13. https://doi.org/10.1016/j.jacc.2019.11.031

Article  CAS  Google Scholar 

Lunati ME, Cimino V, Gandolfi A, Fiorina P (2022) SGLT2-inhibitors are effective and safe in the elderly: The SOLD study. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106396

Article  PubMed  Google Scholar 

Lazzaroni E (2022) Dapagliflozin acutely improves kidney function in type 2 diabetes mellitus. The PRECARE study. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106374

Article  PubMed  Google Scholar 

Schlosser J, Umpierrez G, Weinstock R et al (2022) Standards of Medical Care in Diabetes. Diabetes Care 45:S125–S143. https://doi.org/10.2337/dc22-S009

Article  Google Scholar 

Francese R, Fiorina P (2010) Immunological and regenerative properties of cord blood stem cells. Clin Immunol. https://doi.org/10.1016/j.clim.2010.04.010

Article  PubMed  Google Scholar 

Williams MD, Nadler JL (2007) Inflammatory mechanisms of diabetic complications. Curr Diab Rep 7:242–248. https://doi.org/10.1007/s11892-007-0038-y

Article  CAS  PubMed  Google Scholar 

Tsalamandris S, Antonopoulos AS, Oikonomou E et al (2019) The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol 14:50–59. https://doi.org/10.15420/ecr.2018.33.1

Article  PubMed  PubMed Central  Google Scholar 

Fiorina P, Dell’Aglio P (1996) Impaired nocturnal melatonin excretion and changes of immunological status in ischaemic stroke patients. The Lancet. https://doi.org/10.1016/s0140-6736(96)91246-5

Article  Google Scholar 

Feijóo-Bandín S, Aragón-Herrera A, Otero-Santiago M et al (2022) Role of sodium–glucose co-transporter 2 inhibitors in the regulation of inflammatory processes in animal models. Int J Mol Sci. https://doi.org/10.3390/ijms23105634

Article  PubMed  PubMed Central  Google Scholar 

Bray JJH (2020) A systematic review examining the effects of sodium–glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2020.108368

Article  PubMed  Google Scholar 

Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. https://doi.org/10.2174/1381612811319320005

Article  PubMed  Google Scholar 

Folli F, Corradi D, Fanti P et al (2011) The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev. https://doi.org/10.2174/157339911797415585

Article  PubMed  Google Scholar 

Cerami A (1985) Protein glycosylation and the pathogenesis of atherosclerosis. Metabolism. https://doi.org/10.1016/s0026-0495(85)80008-1

Article  PubMed  Google Scholar 

Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med. https://doi.org/10.1146/annurev.med.46.1.223

Article  PubMed  Google Scholar 

Folli F, Guzzi V, Perego L et al (2010) Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS One. https://doi.org/10.1371/journal.pone.0009923

Article  PubMed  PubMed Central  Google Scholar 

Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P (2021) Neuroprotective effect of SGLT2 inhibitors. Molecules 26:16. https://doi.org/10.3390/molecules26237213

Article  CAS  Google Scholar 

Cowie MR (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-0406-8

Article  PubMed  Google Scholar 

Nasiri-Ansari N, Nikolopoulou C, Papoutsi K et al (2021) Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE(-/-) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. https://doi.org/10.3390/ijms22020818

Article  PubMed  PubMed Central  Google Scholar 

Kondo H, Akoumianakis I, Badi I et al (2020) Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur Heart J 42:4947–4960. https://doi.org/10.1093/eurheartj/ehab420

Article  CAS  Google Scholar 

Quagliariello V (2021) The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol 150:20. https://doi.org/10.1186/s12933-021-01346-y

Article  CAS  Google Scholar 

Diaz-Rodriguez E (2018) Novel effects of dapagliflozin on epicardial adipose tissue with insulin resistance, high levels of inflammatory chemokines production and low differentiation ability. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx186

Article  PubMed  Google Scholar 

Iacobellis G (2022) Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. J Endocrinol Invest. https://doi.org/10.1007/s40618-021-01687-1

Article  PubMed  Google Scholar 

Uthman L, Homayr A, Kerindongo R et al (2019) Empagliflozin and dapagliflozin Reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem 53:865–886. https://doi.org/10.33594/000000178

Article  CAS  PubMed  Google Scholar 

Sukhanov S (2021) The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal. https://doi.org/10.1016/j.cellsig.2020.109825

Article  PubMed  Google Scholar 

Jongs N (2021) Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(21)00243-6

Article  PubMed  Google Scholar 

Sen T, Heerspink HJL (2021) A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. https://doi.org/10.1016/j.cmet.2021.02.016

Article  PubMed  Google Scholar 

Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and Renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. https://doi.org/10.1056/NEJMoa1811744

Article  PubMed  Google Scholar 

The EMPA-KIDNEY Collaborative Group (2022) Empagliflozin in patients with chronic kidney disease. N Engl J Med. https://doi.org/10.1056/NEJMoa2204233

Article  PubMed Central  Google Scholar 

Astorri E, Fiorina P, Gavaruzzi G et al (1997) Left ventricular function in insulin-dependent and in non-insulin-dependent diabetic patients: radionuclide assessment. Cardiology. https://doi.org/10.1159/000177322

Article  PubMed  Google Scholar 

Perseghin G (2005) Cross-sectional assessment of the effect of kidney and kidney-pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients. Pancreas Transplant 46:8. https://doi.org/10.1016/j.jacc.2005.05.075

Article  Google Scholar 

McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. https://doi.org/10.1056/NEJMoa1911303

Article  PubMed  Google Scholar 

Anker SD, Butler J, Filippatos G, EMPEROR-Preserved Trial Investigators (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. https://doi.org/10.1056/NEJMoa2107038

Article  PubMed  Google Scholar 

Nasr MB, Tezza S, D’Addio F et al (2018) PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aam7543

Article  Google Scholar 

Niewczas MA, Pavkov ME, Skupien J et al (2019) A signature of circulating inflammatory proteins and development of end stage renal disease in diabetes. Nat Me. https://doi.org/10.1038/s41591-019-0415-5

Article  Google Scholar 

Xu J, Kitada M, Ogura Y et al (2021) Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells 10:1457. https://doi.org/10.3390/cells10061457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das NA (2020) Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cellular Signaling. https://doi.org/10.1016/j.cellsig.2019.109506

Article  Google Scholar 

Donnini S, Berezin AE, Ferretti E (2022) Cell-target-specific anti-inflammatory effect of empagliflozin: in vitro evidence in human cardiomyocytes. Front Mol Biosci 9:7. https://doi.org/10.3389/fmolb.2022.879522

Article  CAS  Google Scholar 

Kolijn D (2020) Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res.

Comments (0)

No login
gif