JW D. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15:96.
Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26:300–11. https://doi.org/10.1634/stemcells.2007-0594.
Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineer. 2017;3:16–27. https://doi.org/10.1016/J.ENG.2017.01.003.
Yang L, Sun L, Zhang H, Bian F, Zhao Y. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano. 2021;15:20600–6. https://doi.org/10.1021/acsnano.1c09325.
Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: from research to application. Smart Med. 2022:1. https://doi.org/10.1002/smmd.20220014.
Yang L, Wang X, Yu Y, Shang L, Xu W, Zhao Y. Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Res. 2023;16:5292–9. https://doi.org/10.1007/s12274-022-5202-9.
Bennett JP, Matthews R, Faulk WP. Treatment of chronic ulceration of the legs with human amnion. Lancet. 1980;315:1153–6. https://doi.org/10.1016/S0140-6736(80)91616-5.
Ke M, Cj D. Human amnion in the treatment of vaginal malformations. BJOG An Int J Obstet Gynaecol. 1986;93:50–4. https://doi.org/10.1111/j.1471-0528.1986.tb07813.x.
Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction. Cornea. 2005;24:643–53. https://doi.org/10.1097/01.ico.0000151501.80952.c5.
Lee SH, Tseng SCG. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol. 1997;123:303–12. https://doi.org/10.1016/S0002-9394(14)70125-4.
Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater. 2008;15:88–99. https://doi.org/10.22203/ecm.v015a07.
Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012;349:447–58. https://doi.org/10.1007/s00441-012-1424-6.
Chopra A, Thomas BS. Amniotic membrane: a novel material for regeneration and repair. Biomimetics Biomater tissue Eng. 2013;18:1–8.
Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, et al. The amniotic membrane as a source of stem cells. Histol Histopathol. 2010;25:91–8. https://doi.org/10.14670/HH-25.91.
Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S, Seyedjafari E. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications. J Biomater Appl. 2022;37:1341–54. https://doi.org/10.1177/08853282221137609.
Fénelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, et al. Applications of human amniotic membrane for tissue engineering. Membranes (Basel). 2021;11:387. https://doi.org/10.3390/membranes11060387.
Rocha SCM, Maia Baptista CJ. Biochemical properties of amnioticmembrane. Amniotic Membr Orig Charact Med Appl. Dordrecht:Springer Netherlands 2015. 19–40
Aplin JD, Campbell S, Allen TD. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci. 1985;79:119–36. https://doi.org/10.1242/jcs.79.1.119.
Dua HS, Gomes JAP, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol. 2004;49:51–77. https://doi.org/10.1016/j.survophthal.2003.10.004.
Baradaran-Rafii A, Aghayan H-R, Arjmand B, Javadi M-A. Amniotic membrane transplantation. Iran J Ophthalmic Res. 2007;2:58–75.
Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59. https://doi.org/10.1634/stemcells.2004-0357.
Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77:577–88. https://doi.org/10.1095/biolreprod.106.055244.
Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004;17:125–30. https://doi.org/10.1111/j.1749-0774.2004.tb00028.x.
Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. 2004;32:657–64. https://doi.org/10.1016/j.exphem.2004.04.001.
Kobayashi M, Yakuwa T, Sasaki K, Sato K, Kikuchi A, Kamo I, et al. Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant. 2008;17:291–301. https://doi.org/10.3727/096368908784153904.
Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–73. https://doi.org/10.1016/j.ajog.2006.01.101.
Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SCG. Suppression of interleukin 1 α and interleukin 1 β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol. 2001;85:444–9. https://doi.org/10.1136/bjo.85.4.444.
Hao Y, Ma DHK, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52. https://doi.org/10.1097/00003226-200005000-00018.
Kim JS, Kim JC, Na BK, Jeong JM, Song CY. Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res. 2000;70:329–37. https://doi.org/10.1006/exer.1999.0794.
Higa K, Shimmura S, Shimazaki J, Tsubota K. Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea. 2005;24:206–12. https://doi.org/10.1097/01.ico.0000133999.45262.83.
Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, et al. Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant. 2015;24:1733–52. https://doi.org/10.3727/096368914X684033.
Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthetic Surg. 2014;67:662–75. https://doi.org/10.1016/j.bjps.2014.01.031.
Tseng SCG, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179:325–35.
Sant Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant. 2011;20:441–53. https://doi.org/10.3727/096368910X522252.
Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.
Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds. 2012;24:299–307.
Otsuka T, Kan HM, Laurencin CT. Regenerative engineering approaches to scar-free skin regeneration. Regen Eng Transl Med. 2022;8:225–47. https://doi.org/10.1007/s40883-021-00229-8.
King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JRG. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28:161–9. https://doi.org/10.1016/j.placenta.2006.01.006.
Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM. The novel antimicrobial peptide β3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol. 2004;191:1678–87. https://doi.org/10.1016/j.ajog.2004.03.081.
Tehrani FA, Modaresifar K, Azizian S, Niknejad H. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep. 2017;7:17022. https://doi.org/10.1038/s41598-017-17210-7.
Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002;168:2356–64. https://doi.org/10.4049/jimmunol.168.5.2356.
Zare-Bidaki M, Sadrinia S, Erfani S, Afkar E, Ghanbarzade N. Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J Reprod Infertil. 2017;18:218–24.
Niknejad H, Yazdanpanah G, Ahmadiani A. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res. 2016;363:599–608. https://doi.org/10.1007/s00441-016-2364-3.
Comments (0)