Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001). Together with Wright and Dyson (1999), Uversky (2002) and Tompa (2002), this article makes the original arguments that IDRs can and do have important roles in cellular function.
Article CAS PubMed Google Scholar
Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm. J. Mol. Biol. 293, 321–331 (1999).
Article CAS PubMed Google Scholar
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
Article PubMed PubMed Central Google Scholar
Uversky, V. N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).
Article CAS PubMed PubMed Central Google Scholar
Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).
Article CAS PubMed Google Scholar
Brodsky, S., Jana, T. & Barkai, N. Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity. Curr. Opin. Struct. Biol. 71, 110–115 (2021).
Article CAS PubMed Google Scholar
Fuxreiter, M. et al. Malleable machines take shape in eukaryotic transcriptional regulation. Nat. Chem. Biol. 4, 728–737 (2008).
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., Bai, X.-C. & Chen, Z. J. Structures and mechanisms in the cGAS–STING innate immunity pathway. Immunity 53, 43–53 (2020).
Article CAS PubMed Google Scholar
Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).
Article CAS PubMed PubMed Central Google Scholar
Pelham, J. F., Dunlap, J. C. & Hurley, J. M. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun. Signal. 18, 181 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).
Article CAS PubMed Google Scholar
Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).
Article CAS PubMed Google Scholar
Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2014).
Payliss, B. J. et al. Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease. Cell Rep. 41, 111537 (2022).
Article CAS PubMed Google Scholar
Witus, S. R. et al. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J. 42, e113565 (2023).
Article CAS PubMed Google Scholar
Yanez Orozco, I. S. et al. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat. Commun. 9, 3724 (2018).
Article PubMed PubMed Central Google Scholar
Watson, M. et al. Hidden multivalency in phosphatase recruitment by a disordered AKAP scaffold. J. Mol. Biol. 434, 167682 (2022).
Article CAS PubMed Google Scholar
Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).
Article CAS PubMed PubMed Central Google Scholar
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
Article CAS PubMed PubMed Central Google Scholar
Cermakova, K. et al. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 (2021).
Article CAS PubMed PubMed Central Google Scholar
Borcherds, W. et al. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000–1002 (2014). This paper offers direct evidence that ensemble properties of IDRs can directly influence cellular function.
Article CAS PubMed Google Scholar
Dyla, M. & Kjaergaard, M. Intrinsically disordered linkers control tethered kinases via effective concentration. Proc. Natl Acad. Sci. USA 117, 21413–21419 (2020).
Article CAS PubMed PubMed Central Google Scholar
Millard, P. S. et al. IDDomainSpotter: compositional bias reveals domains in long disordered protein regions — insights from transcription factors. Protein Sci. 29, 169–183 (2020).
Article CAS PubMed Google Scholar
Lotthammer, J. M., Ginell, G. M., Griffith, D., Emenecker, R. J. & Holehouse, A. S. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat. Methods (in press).
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
Article CAS PubMed PubMed Central Google Scholar
Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).
Cohan, M. C. & Pappu, R. V. Making the case for disordered proteins and biomolecular condensates in bacteria. Trends Biochem. Sci. 45, 668–680 (2020).
Article CAS PubMed Google Scholar
Dyson, H. J. & Wright, P. E. Equilibrium NMR studies of unfolded and partially folded proteins. Nat. Struct. Biol. 5, 499–503 (1998). Along with Wright and Dyson (1999), this perspective article makes the case that an ensemble-centric biophysical lens is crucial for understanding disordered proteins.
Article CAS PubMed Google Scholar
Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007).
Article CAS PubMed Google Scholar
Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).
Article CAS PubMed Google Scholar
Babu, M. M., Kriwacki, R. W. & Pappu, R. V. Structural biology. Versatility from protein disorder. Science 337, 1460–1461 (2012).
Article CAS PubMed Google Scholar
Lazar, T. et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 49, D404–D411 (2021).
Article CAS PubMed Google Scholar
Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mao, A. H., Lyle, N. & Pappu, R. V. Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochem. J. 449, 307–318 (2013).
Article CAS PubMed Google Scholar
Crabtree, M. D. et al. Conserved helix-flanking prolines modulate intrinsically disordered protein: target affinity by altering the lifetime of the bound complex. Biochemistry 56, 2379–2384 (2017).
Article CAS PubMed Google Scholar
Wicky, B. I. M., Shammas, S. L. & Clarke, J. Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proc. Natl Acad. Sci. USA 114, 9882–9887 (2017).
Article CAS PubMed PubMed Central Google Scholar
Dyla, M., González Foutel, N. S., Otzen, D. E. & Kjaergaard, M. The optimal docking strength for reversibly tethered kinases. Proc. Natl Acad. Sci. USA 119, e2203098119 (2022).
Article CAS PubMed PubMed Central Google Scholar
González-Foutel, N. S. et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat. Struct. Mol. Biol. 29, 781–790 (2022). In this study, the authors present evidence that a viral IDR linker is conserved with respect to ensemble dimensions, despite large-scale sequence and length variation.
Comments (0)