The molecular basis for cellular function of intrinsically disordered protein regions

Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001). Together with Wright and Dyson (1999), Uversky (2002) and Tompa (2002), this article makes the original arguments that IDRs can and do have important roles in cellular function.

Article  CAS  PubMed  Google Scholar 

Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm. J. Mol. Biol. 293, 321–331 (1999).

Article  CAS  PubMed  Google Scholar 

van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Uversky, V. N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

Article  CAS  PubMed  Google Scholar 

Brodsky, S., Jana, T. & Barkai, N. Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity. Curr. Opin. Struct. Biol. 71, 110–115 (2021).

Article  CAS  PubMed  Google Scholar 

Fuxreiter, M. et al. Malleable machines take shape in eukaryotic transcriptional regulation. Nat. Chem. Biol. 4, 728–737 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Bai, X.-C. & Chen, Z. J. Structures and mechanisms in the cGAS–STING innate immunity pathway. Immunity 53, 43–53 (2020).

Article  CAS  PubMed  Google Scholar 

Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelham, J. F., Dunlap, J. C. & Hurley, J. M. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun. Signal. 18, 181 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).

Article  CAS  PubMed  Google Scholar 

Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

Article  CAS  PubMed  Google Scholar 

Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2014).

Article  Google Scholar 

Payliss, B. J. et al. Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease. Cell Rep. 41, 111537 (2022).

Article  CAS  PubMed  Google Scholar 

Witus, S. R. et al. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J. 42, e113565 (2023).

Article  CAS  PubMed  Google Scholar 

Yanez Orozco, I. S. et al. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat. Commun. 9, 3724 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Watson, M. et al. Hidden multivalency in phosphatase recruitment by a disordered AKAP scaffold. J. Mol. Biol. 434, 167682 (2022).

Article  CAS  PubMed  Google Scholar 

Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cermakova, K. et al. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borcherds, W. et al. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000–1002 (2014). This paper offers direct evidence that ensemble properties of IDRs can directly influence cellular function.

Article  CAS  PubMed  Google Scholar 

Dyla, M. & Kjaergaard, M. Intrinsically disordered linkers control tethered kinases via effective concentration. Proc. Natl Acad. Sci. USA 117, 21413–21419 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millard, P. S. et al. IDDomainSpotter: compositional bias reveals domains in long disordered protein regions — insights from transcription factors. Protein Sci. 29, 169–183 (2020).

Article  CAS  PubMed  Google Scholar 

Lotthammer, J. M., Ginell, G. M., Griffith, D., Emenecker, R. J. & Holehouse, A. S. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat. Methods (in press).

Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).

Article  CAS  Google Scholar 

Cohan, M. C. & Pappu, R. V. Making the case for disordered proteins and biomolecular condensates in bacteria. Trends Biochem. Sci. 45, 668–680 (2020).

Article  CAS  PubMed  Google Scholar 

Dyson, H. J. & Wright, P. E. Equilibrium NMR studies of unfolded and partially folded proteins. Nat. Struct. Biol. 5, 499–503 (1998). Along with Wright and Dyson (1999), this perspective article makes the case that an ensemble-centric biophysical lens is crucial for understanding disordered proteins.

Article  CAS  PubMed  Google Scholar 

Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007).

Article  CAS  PubMed  Google Scholar 

Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

Article  CAS  PubMed  Google Scholar 

Babu, M. M., Kriwacki, R. W. & Pappu, R. V. Structural biology. Versatility from protein disorder. Science 337, 1460–1461 (2012).

Article  CAS  PubMed  Google Scholar 

Lazar, T. et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 49, D404–D411 (2021).

Article  CAS  PubMed  Google Scholar 

Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao, A. H., Lyle, N. & Pappu, R. V. Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochem. J. 449, 307–318 (2013).

Article  CAS  PubMed  Google Scholar 

Crabtree, M. D. et al. Conserved helix-flanking prolines modulate intrinsically disordered protein: target affinity by altering the lifetime of the bound complex. Biochemistry 56, 2379–2384 (2017).

Article  CAS  PubMed  Google Scholar 

Wicky, B. I. M., Shammas, S. L. & Clarke, J. Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proc. Natl Acad. Sci. USA 114, 9882–9887 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dyla, M., González Foutel, N. S., Otzen, D. E. & Kjaergaard, M. The optimal docking strength for reversibly tethered kinases. Proc. Natl Acad. Sci. USA 119, e2203098119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Foutel, N. S. et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat. Struct. Mol. Biol. 29, 781–790 (2022). In this study, the authors present evidence that a viral IDR linker is conserved with respect to ensemble dimensions, despite large-scale sequence and length variation.

Comments (0)

No login
gif