Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011). An overall guide for practitioners to gain a better understanding of VCID.
Article PubMed PubMed Central Google Scholar
Kalaria, R. N. & Ballard, C. Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis. Assoc. Disord. 13, S115–S123 (1999).
Iadecola, C. et al. Vascular cognitive impairment and dementia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 73, 3326–3344 (2019). A critical appraisal of the epidemiology, pathobiology, neuropathology and neuroimaging of VCID.
Article PubMed PubMed Central Google Scholar
Simrén, J. et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 17, 1145–1156 (2021).
Article PubMed PubMed Central Google Scholar
Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
Article PubMed PubMed Central Google Scholar
Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013). A review of the pathophysiology of VCID.
Article CAS PubMed Google Scholar
van der Flier, W. M. et al. Vascular cognitive impairment. Nat. Rev. Dis. Prim. 4, 18003 (2018). A comprehensive review of VCID.
Zhou, X. J., Vaziri, N. D., Wang, X. Q., Silva, F. G. & Laszik, Z. Nitric oxide synthase expression in hypertension induced by inhibition of glutathione synthase. J. Pharmacol. Exp. Ther. 300, 762–767 (2002).
Article CAS PubMed Google Scholar
Dowsett, L. et al. ADMA: a key player in the relationship between vascular dysfunction and inflammation in atherosclerosis. J. Clin. Med. 9, 3026 (2020).
Article CAS PubMed PubMed Central Google Scholar
Iadecola, C. & Gottesman, R. F. Neurovascular and cognitive dysfunction in hypertension. Circ. Res. 124, 1025–1044 (2019).
Article CAS PubMed PubMed Central Google Scholar
Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kernagis, D. N. & Laskowitz, D. T. Evolving role of biomarkers in acute cerebrovascular disease. Ann. Neurol. 71, 289–303 (2012).
Article CAS PubMed Google Scholar
Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).
Article CAS PubMed PubMed Central Google Scholar
Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).
Article CAS PubMed PubMed Central Google Scholar
Shimokawa, H. & Godo, S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin. Pharmacol. Toxicol. 127, 92–101 (2020).
Article CAS PubMed Google Scholar
Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011). A review of pathophysiology of the neurovascular unit.
Article CAS PubMed PubMed Central Google Scholar
Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018). A review of the blood–brain barrier in Alzheimer disease and other neurodegenerative disorders.
Article CAS PubMed PubMed Central Google Scholar
Nation, D. A. et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sweeney, M. D. et al. A novel sensitive assay for detection of a biomarker of pericyte injury in cerebrospinal fluid. Alzheimers Dement. 16, 821–830 (2020).
Article PubMed PubMed Central Google Scholar
Rosenberg, G. A. Willis lecture: biomarkers for inflammatory white matter injury in Binswanger disease provide pathways to precision medicine. Stroke 53, 3514–3523 (2022).
Article PubMed PubMed Central Google Scholar
Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).
Article CAS PubMed PubMed Central Google Scholar
Procter, T. V., Williams, A. & Montagne, A. Interplay between brain pericytes and endothelial cells in dementia. Am. J. Pathol. 191, 1917–1931 (2021).
Article CAS PubMed Google Scholar
Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).
Article CAS PubMed Google Scholar
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).
Article CAS PubMed PubMed Central Google Scholar
Touyz, R. M. & Briones, A. M. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens. Res. 34, 5–14 (2011).
Article CAS PubMed Google Scholar
Mayhan, W. G., Arrick, D. M., Sharpe, G. M. & Sun, H. Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation 15, 225–236 (2008).
Article CAS PubMed Google Scholar
Dong, Y. F. et al. Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension 58, 635–642 (2011).
Article CAS PubMed Google Scholar
Santhanam, A. V., d’Uscio, L. V. & Katusic, Z. S. Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling. J. Neurochem. 131, 521–529 (2014).
Article CAS PubMed PubMed Central Google Scholar
Prasad, K. AGE-RAGE stress: a changing landscape in pathology and treatment of Alzheimer’s disease. Mol. Cell Biochem. 459, 95–112 (2019).
Article CAS PubMed Google Scholar
Tang, Y. & Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194 (2016).
Article CAS PubMed Google Scholar
Guo, S., Wang, H. & Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 14, 815347 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kim, E., Otgontenger, U., Jamsranjav, A. & Kim, S. S. Deleterious alteration of glia in the brain of Alzheimer’s disease. Int. J. Mol. Sci. 21, 6676 (2020).
Article CAS PubMed PubMed Central Google Scholar
Chen, B., Cheng, Q., Yang, K. & Lyden, P. D. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41, 2348–2352 (2010).
Article CAS PubMed Google Scholar
Zoia, A., Drigo, M., Caldin, M., Simioni, P. & Piek, C. J. Fibrinolysis in dogs with intracavitary effusion: a review. Animals 12, 2487 (2022).
Article PubMed PubMed Central Google Scholar
Chen, Z. L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).
Article CAS PubMed Google Scholar
Ihara, M. et al. Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J. Cereb. Blood Flow Metab. 21, 828–834 (2001).
Comments (0)