Machine learning applied in patient-reported outcome research—exploring symptoms in adjuvant treatment of breast cancer

Kotronoulas G, Kearney N, Maguire R, et al. What is the value of the routine use of patient-reported outcome measures toward improvement of patient outcomes, processes of care, and health service outcomes in cancer care? A systematic review of controlled trials. J Clin Oncol. 2014;32(14):1480–501.

Article  PubMed  Google Scholar 

Basch E, Deal AM, Dueck AC, et al. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA. 2017;318(2):197–8.

Article  PubMed  PubMed Central  Google Scholar 

Denis F, Basch E, Septans AL, et al. Two-year survival comparing web-based symptom monitoring vs routine surveillance following treatment for lung cancer. JAMA. 2019;321(3):306–7.

Article  PubMed  PubMed Central  Google Scholar 

Barbera L, Sutradhar R, Seow H, et al. The impact of routine edmonton symptom assessment system (ESAS) use on overall survival in cancer patients: results of a population-based retrospective matched cohort analysis. Cancer Med. 2020;9(19):7107–15.

Article  PubMed  PubMed Central  Google Scholar 

Basch E, Charlot M, Dueck AC. Population-level evidence of survival benefits of patient-reported outcome symptom monitoring software systems in routine cancer care. Cancer Med. 2020;9(21):7797–9.

Article  PubMed  PubMed Central  Google Scholar 

Sim JA, Yun YH. Predicting disease-free lung cancer survival using patient reported outcome (PRO) measurements with comparisons of five machine learning techniques (MLT). Stud Health Technol Inform. 2019;264:1588–9.

PubMed  Google Scholar 

Pappot H, Bæksted C, Knoop A, et al. Routine surveillance for symptomatic toxicities with real-time clinician reporting in Danish breast cancer patients—organization and design of the first national, cluster randomized trial using the Patient-Reported Outcomes version of Common Terminology Criteria for Adverse Events (PRO-CTCAE). Breast J. 2019;25(2):269–72.

Article  PubMed  Google Scholar 

Absolom K, Holch P, Warrington L, et al. Electronic patient self-reporting of adverse-events: patient information and aDvice (eRAPID): a randomized controlled trial in systemic cancer treatment. BMC Cancer. 2017;17:318.

Article  PubMed  PubMed Central  Google Scholar 

Pappot H, Baeksted CW, Nissen A, et al. Clinical effects of assessing electronic patient-reported outcomes monitoring symptomatic toxicities during breast cancer therapy: a nationwide and population-based study. Breast Cancer. 2021;28:1096–9.

Article  PubMed  Google Scholar 

Absolom K, Warrington L, Hudson E, et al. Phase III randomized controlled trial of eRAPID: eHealth intervention during chemotherapy. J Clin Oncol. 2021;39(7):734–47.

Article  CAS  PubMed  Google Scholar 

Basch E, Leahy AB, Dueck C. Benefits of digital symptom monitoring with patient-reported outcomes during adjuvant cancer treatment. J Clin Oncol. 2021;39(7):701–3.

Article  CAS  PubMed  Google Scholar 

Nogales A, Garcia-Tejedor A, Monge D, et al. A survey of deep learning models in medical therapeutic areas. Artif Intell Med. 2021;112:102020.

Article  PubMed  Google Scholar 

Melstrom LG, Rodin AS, Rossi LA, et al. Patient generated health data and electronic health record integration in oncologic surgery: a call for artificial intelligence and machine learning. J Surg Oncol. 2021;123(1):52–60.

Article  PubMed  Google Scholar 

Livanainen S, Ekstrom J, Virtanen H, et al. Electronic patient-reported outcomes and machine learning in predicting immune-related adverse events of immune checkpoint inhibitor therapies. BMC Med Inform Decis Mak. 2021;21(1):205.

Article  Google Scholar 

Breiman L. Random forests. Mach Learn. 2001;45:5–32.

Article  Google Scholar 

Di Maio M, Basch E, Denis F, et al. The role of patient-reported outcome measures in the continuum of cancer clinical care: ESMO Clinical Practice Guideline. Ann Oncol. 2022;33(9):878–92.

Article  PubMed  Google Scholar 

Lindvall C, Deng C, Agaronnik N, et al. Deep learning for cancer symptoms monitoring on the basis of electronic health record unstructured clinical notes. JCO Clin Cancer Inform. 2022. https://doi.org/10.1200/CCI.21.00136.

Article  PubMed  PubMed Central  Google Scholar 

Liu L, Suo T, Shen Y, et al. Clinicians versus patients subjective adverse events assessment: based on patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). Qual Life Res. 2020;29(11):3009–15.

Article  PubMed  Google Scholar 

Eckhoff L, Knoop AS, Jensen MB, et al. Risk of docetaxel-induced peripheral neuropathy among 1725 Danish patients with early-stage breast cancer. Breast Cancer Res Treat. 2013;142(1):109–18.

Article  CAS  PubMed  Google Scholar 

Baeksted CW, Nissen A, Knoop A, et al. Handling of symptomatic adverse events in breast cancer-patients receiving adjuvant chemotherapy in a cluster randomized trial with electronic patient-reported outcomes as intervention. Breast J. 2019;25(6):1295–6.

Article  PubMed  Google Scholar 

Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1:206–15.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif