Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).
Article CAS PubMed Google Scholar
Bowers, J. et al. Thyroid hormone signaling and homeostasis during aging. Endocr. Rev. 34, 556–589 (2013).
Article CAS PubMed Google Scholar
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
Article CAS PubMed PubMed Central Google Scholar
Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).
McDermott, M. T. & Ridgway, E. C. Subclinical hypothyroidism is mild thyroid failure and should be treated. J. Clin. Endocrinol. Metab. 86, 4585–4590 (2001).
Article CAS PubMed Google Scholar
Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).
Schreiber, G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 175, 61–73 (2002).
Article CAS PubMed Google Scholar
Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).
Article PubMed PubMed Central Google Scholar
Szarek, E., Cheah, P. S., Schwartz, J. & Thomas, P. Molecular genetics of the developing neuroendocrine hypothalamus. Mol. Cell Endocrinol. 323, 115–123 (2010).
Article CAS PubMed Google Scholar
Steinfelder, H. J. et al. Thyrotropin-releasing hormone regulation of human TSHB expression: role of a pituitary-specific transcription factor (Pit-1/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc. Natl Acad. Sci. USA 88, 3130–3134 (1991).
Article CAS PubMed PubMed Central Google Scholar
Silva, J. E. & Larsen, P. R. Pituitary nuclear 3,5,3′-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science 198, 617–620 (1977).
Article CAS PubMed Google Scholar
Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).
Article CAS PubMed PubMed Central Google Scholar
Fliers, E., Kalsbeek, A. & Boelen, A. Beyond the fixed setpoint of the hypothalamus–pituitary–thyroid axis. Eur. J. Endocrinol. 171, R197–R208 (2014).
Article CAS PubMed Google Scholar
O’Brian, J. T. et al. Thyroid hormone homeostasis in states of relative caloric deprivation. Metabolism 29, 721–727 (1980).
Kopp, P. The TSH receptor and its role in thyroid disease. Cell Mol. Life Sci. 58, 1301–1322 (2001).
Article CAS PubMed Google Scholar
Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).
Article CAS PubMed Google Scholar
Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011).
Article CAS PubMed PubMed Central Google Scholar
Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).
Article CAS PubMed PubMed Central Google Scholar
Sap, J. et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).
Article CAS PubMed Google Scholar
Thompson, C. C., Weinberger, C., Lebo, R. & Evans, R. M. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237, 1610–1614 (1987).
Article CAS PubMed Google Scholar
Flamant, F. et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).
Article CAS PubMed Google Scholar
Maia, A. L., Kim, B. W., Huang, S. A., Harney, J. W. & Larsen, P. R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Invest. 115, 2524–2533 (2005).
Article CAS PubMed PubMed Central Google Scholar
Pilo, A. et al. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am. J. Physiol. 258, E715–E726 (1990).
Gudernatsch, J. F. Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Arch. Entwicklungsmech Org. 35, 457–483 (1912).
Furlow, J. D. & Neff, E. S. A developmental switch induced by thyroid hormone: xenopus laevis metamorphosis. Trends Endocrinol. Metab. 17, 40–47 (2006).
Yoshimura, T. et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426, 178–181 (2003).
Article CAS PubMed Google Scholar
Mai, W. et al. Thyroid hormone receptor α is a molecular switch of cardiac function between fetal and postnatal life. Proc. Natl Acad. Sci. USA 101, 10332–10337 (2004).
Article CAS PubMed PubMed Central Google Scholar
Williams, F. L. et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J. Clin. Endocrinol. Metab. 89, 5314–5320 (2004).
Article CAS PubMed Google Scholar
Furumoto, H. et al. An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol. Cell Biol. 25, 124–135 (2005).
Article CAS PubMed PubMed Central Google Scholar
Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2579 (2006).
Article CAS PubMed PubMed Central Google Scholar
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Article CAS PubMed Google Scholar
Mourouzis, I., Politi, E. & Pantos, C. Thyroid hormone and tissue repair: new tricks for an old hormone? J. Thyroid. Res. 2013, 312104 (2013).
Article PubMed PubMed Central Google Scholar
Luongo, C., Dentice, M. & Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 15, 479–488 (2019).
Remaud, S. et al. Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. eLlife 6, e29996 (2017).
Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).
Article CAS PubMed Google Scholar
Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).
Article CAS PubMed Google Scholar
Surks, M. I. & Boucai, L. Age- and race-based serum thyrotropin reference limits. J. Clin. Endocrinol. Metab. 95, 496–502 (2010).
Comments (0)