Molecular mechanism of glutaminase activation through filamentation and the role of filaments in mitophagy protection

Shijie, J. et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J. Exp. Med. 217, 87–92 (2009).

Article  CAS  PubMed  Google Scholar 

Erdmann, N. et al. Glutamate production by HIV-1 infected human macrophage is blocked by the inhibition of glutaminase. J. Neurochem. 102, 539–549 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, W.-F. et al. Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion. Cell Res. 28, 865–867 (2018).

Gomes, L. C., Benedetto Di, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

Kvamme, E., Tveit, B. & Svenneby, G. Glutaminase from pig renal cortex: I. Purification and general properties. J. Biol. Chem. 245, 1871–1877 (1970).

Article  CAS  PubMed  Google Scholar 

Olsen, B. R. & Svenneby, G. Formation and ultrastructure of enzymically active polymers of pig renal glutaminase. J. Mol. Biol. 52, 239–245 (1970).

Article  CAS  PubMed  Google Scholar 

Cassago, A. et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc. Natl Acad. Sci. USA 109, 1092–1097 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira, A. P. S. et al. Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor. J. Biol. Chem. 288, 28009–28020 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rumping, L. et al. GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Hum. Mol. Genet. 28, 96–104 (2019).

Article  CAS  PubMed  Google Scholar 

Jiang, B. et al. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol. Cell 82, 1821–1835.e6 (2022).

Article  CAS  PubMed  Google Scholar 

Huang, Q. et al. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. J. Biol. Chem. 293, 3535–3545 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, G. et al. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry 47, 5724–5735 (2008).

Article  CAS  PubMed  Google Scholar 

Jones, S. & Thornton, J. M. Principles of protein-protein interactions. Proc. Natl Acad. Sci. USA 93, 13–20 (1996).

Li, Y. et al. Mechanistic basis of glutaminase activation: a key enzyme that promotes glutamine metabolism in cancer cells. J. Biol. Chem. 291, 20900–20910 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

Article  CAS  PubMed  Google Scholar 

Acuner Ozbabacan, S. E., Engin, H. B., Gursoy, A. & Keskin, O. Transient protein–protein interactions. Protein Eng. Des. Sel. 24 635–648 (2011).

Pasquali, C. C. et al. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. J. Biol. Chem. 292, 11572–11585 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira, I. M. et al. Structure and activation mechanism of the human liver-type glutaminase GLS2. Biochimie 185, 96–104 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boysen, G. et al. Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int. J. Radiat. Biol. 95, 436–442 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson, M. M. et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407–414 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramachandran, S. et al. Structural basis for exploring the allosteric inhibition of human kidney type glutaminase. Oncotarget 7, 57943–57954 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawajiri, S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584, 1073–1079 (2010).

Article  CAS  PubMed  Google Scholar 

Soth, M. J. et al. Discovery of IPN60090, a clinical stage selective glutaminase-1 (GLS-1) inhibitor with excellent pharmacokinetic and physicochemical properties. J. Med. Chem. 63, 12957–12977 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laake, J. H. et al. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88, 1137–1151 (1999).

Article  CAS  PubMed  Google Scholar 

Zacharias, N. M. et al. Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci. Rep. 7, 16159 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ma, Y., Wang, L. & Jia, R. The role of mitochondrial dynamics in human cancers. Am. J. Cancer Res. 10, 1278–1293 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Valera-Alberni, M. et al. Crosstalk between Drp1 phosphorylation sites during mitochondrial remodeling and their impact on metabolic adaptation. Cell Rep. 36, 109565 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding, W.-X. & Yin, X.-M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem. 393, 547–564 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. & Newsholme, P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Chin, R. M., Panavas, T., Brown, J. M. & Johnson, K. K. Optimized mitochondrial targeting of proteins encoded by modified mRNAs rescues cells harboring mutations in mtATP6. Cell Rep. 22, 2818–2826 (2018).

Article  PubMed  Google Scholar 

Strack, R. L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).

Article  CAS  PubMed  Google Scholar 

de Guzzi Cassago, C. A. et al. Glutaminase affects the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) via direct interaction. Biochemistry 57, 6293–6307 (2018).

Article  PubMed  Google Scholar 

Wang, W. & Malcolm, B. A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. Biotechniques 26, 680–682 (1999).

Article  CAS  PubMed  Google Scholar 

Tian, S. & Das, R. Primerize-2D: automated primer design for RNA multidimensional chemical mapping. Bioinformatics 33, 1405–1406 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winter, D. J. rentrez: an R package for the NCBI eUtils API. R Journal 9, 520–526 (2017).

Article  Google Scholar 

Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C. & Hochreiter, S. msa: an R package for multiple sequence alignment. Bioinformatics 31, 3997–3999 (2015).

Article  CAS  PubMed 

Comments (0)

No login
gif