Kalia, R. & Frost, A. Open and cut: allosteric motion and membrane fission by dynamin superfamily proteins. Mol. Biol. Cell 30, 2097–2104 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pfitzner, A. K., von Filseck, J. M. & Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends Cell Biol. 31, 856–868 (2021).
Article CAS PubMed Google Scholar
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).
Article CAS PubMed Google Scholar
Harrison, S. C. Viral membrane fusion. Virology 479, 498–507 (2015).
White, J. M., Ward., A.E., Odongo, L. & Tamm, L.K. Viral membrane fusion: a dance between proteins and lipids. Annu. Rev. Virol. 10, https://doi.org/10.1146/annurev-virology-111821-093413 (2023).
Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).
Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).
Article PubMed PubMed Central Google Scholar
Südhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).
Schillemans, M., Karampini, E., Kat, M. & Bierings, R. Exocytosis of Weibel–Palade bodies: how to unpack a vascular emergency kit. J. Thromb. Haemost. 17, 6–18 (2019).
Article CAS PubMed Google Scholar
Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).
Article CAS PubMed Google Scholar
Brukman, N. G., Uygur, B., Podbilewicz, B. & Chernomordik, L. V. How cells fuse. J. Cell Biol. 218, 1436–1451 (2019).
Article CAS PubMed PubMed Central Google Scholar
Petrany, M. J. & Millay, D. P. Cell fusion: merging membranes and making muscle. Trends Cell Biol. 29, 964–973 (2019).
Article CAS PubMed PubMed Central Google Scholar
Gao, S. & Hu, J. Mitochondrial fusion: the machineries in and out. Trends Cell Biol. 31, 62–74 (2021).
Article CAS PubMed Google Scholar
Wickner, W. & Rizo, J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol. Biol. Cell 28, 707–711 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. & Hughson, F. M. Chaperoning SNARE folding and assembly. Annu. Rev. Biochem. 90, 581–603 (2021).
Article CAS PubMed PubMed Central Google Scholar
Rizo, J. Molecular mechanisms underlying neurotransmitter release. Annu. Rev. Biophys. 51, 377–408 (2022).
Article PubMed PubMed Central Google Scholar
Brunger, A. T., Choi, U. B., Lai, Y., Leitz, J. & Zhou, Q. Molecular mechanisms of fast neurotransmitter release. Annu. Rev. Biophys. 47, 469–497 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bubnis, G. & Grubmüller, H. Sequential water and headgroup merger: membrane poration paths and energetics from MD simulations. Biophys. J. 119, 2418–2430 (2020).
Article CAS PubMed PubMed Central Google Scholar
Smirnova, Y. G., Risselada, H. J. & Müller, M. Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Proc. Natl Acad. Sci. USA 116, 2571–2576 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kozlov, M. M. & Markin, V. S. Possible mechanism of membrane fusion [Russian]. Biofizika 28, 242–247 (1983).
Kuzmin, P. I., Zimmerberg, J., Chizmadzhev, Y. A. & Cohen, F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl Acad. Sci. USA 98, 7235–7240 (2001).
Article CAS PubMed PubMed Central Google Scholar
Kozlov, M. M. & Chernomordik, L. V. Membrane tension and membrane fusion. Curr. Opin. Struct. Biol. 33, 61–67 (2015).
Article CAS PubMed PubMed Central Google Scholar
Chernomordik, L. V. & Kozlov, M. M. Protein–lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem 72, 175–207 (2003).
Article CAS PubMed Google Scholar
Cohen, F. S. & Melikyan, G. B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004).
Article CAS PubMed Google Scholar
Fan, Z. A., Tsang, K. Y., Chen, S. H. & Chen, Y. F. Revisit the correlation between the elastic mechanics and fusion of lipid membranes. Sci. Rep. 6, 31470 (2016).
Article CAS PubMed PubMed Central Google Scholar
Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008).
Article CAS PubMed PubMed Central Google Scholar
Marrink, S. J. & Mark, A. E. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J. Am. Chem. Soc. 125, 11144–11145 (2003).
Article CAS PubMed Google Scholar
Beaven, A. H., Sapp, K. & Sodt, A. J. Simulated dynamic cholesterol redistribution favors membrane fusion pore constriction. Biophys. J. 122, 2162–2175 (2022).
Johner, N., Harries, D. & Khelashvili, G. Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations. BMC Bioinform. 17, 161 (2016).
Rice, A., Zimmerberg, J. & Pastor, R. W. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys. J. 122, 1018–1032 (2023).
Article CAS PubMed Google Scholar
Grafmuller, A., Shillcock, J. & Lipowsky, R. The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys. J. 96, 2658–2675 (2009).
Article PubMed PubMed Central Google Scholar
Kawamoto, S., Klein, M. L. & Shinoda, W. Coarse-grained molecular dynamics study of membrane fusion: curvature effects on free energy barriers along the stalk mechanism. J. Chem. Phys. 143, 243112 (2015).
McLaughlin, S. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18, 113–136 (1989).
Article CAS PubMed Google Scholar
Lipowsky, R. The conformation of membranes. Nature 349, 475–481 (1991).
Article CAS PubMed Google Scholar
Rand, R. P. & Parsegian, V. A. Physical force considerations in model and biological membranes. Can. J. Biochem. Cell Biol. 62, 752–759 (1984).
Article CAS PubMed Google Scholar
Israelachvili, J. N. Surface forces. In The Handbook of Surface Imaging and Visualization (ed. Hubbard, A. T.) Ch. 24, 793–817 (Taylor & Francis, 1995).
Tamm, L. K. & Han, X. Viral fusion peptides: a tool set to disrupt and connect biological membranes. Biosci. Rep. 20, 501–518 (2000).
Article CAS PubMed Google Scholar
Risselada, H. J. et al. Line-tension controlled mechanism for influenza fusion. PLoS ONE 7, e38302 (2012).
Article CAS PubMed PubMed Central Google Scholar
Langosch, D. et al. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J. Mol. Biol. 311, 709–721 (2001).
Article CAS PubMed Google Scholar
Hernandez, J. M., Kreutzberger, A. J. B., Kiessling, V., Ta
Comments (0)