Nisole, S. & Saïb, A. Early steps of retrovirus replicative cycle. Retrovirology 1, 9 (2004).
Article PubMed PubMed Central Google Scholar
Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).
Article CAS PubMed Google Scholar
de Parseval, N. & Heidmann, T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet. Genome Res. 110, 318–332 (2005). Together with Jern and Coffin (2008), this paper is a seminal review article that discusses in detail the foundational studies of endogenous retroviruses.
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Article CAS PubMed Google Scholar
Vargiu, L. et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13, 7 (2016). This paper is a comprehensive characterization and annotation of the complex HERV structures scattered throughout the human genome.
Article PubMed PubMed Central Google Scholar
Chang, Y.-H. & Dubnau, J. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat. Commun. 14, 966 (2023).
Article CAS PubMed PubMed Central Google Scholar
Dopkins, N. et al. A field guide to endogenous retrovirus regulatory networks. Mol. Cell 82, 3763–3768 (2022).
Article CAS PubMed Google Scholar
Yang, B. et al. Species-specific KRAB-ZFPs function as repressors of retroviruses by targeting PBS regions. Proc. Natl Acad. Sci. USA 119, e2119415119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707.e8 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bannert, N. & Kurth, R. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genom. Hum. Genet. 7, 149–173 (2006).
Turelli, P. et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24, 1260–1270 (2014).
Article CAS PubMed PubMed Central Google Scholar
Groh, S. et al. Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nat. Commun. 12, 5996 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).
Article CAS PubMed Google Scholar
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).
Ha, H. et al. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genom. 15, 545 (2014).
Whitelaw, E. & Martin, D. I. K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).
Article CAS PubMed Google Scholar
Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).
Article CAS PubMed Google Scholar
Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).
Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).
Article CAS PubMed PubMed Central Google Scholar
Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e8 (2018).
Article CAS PubMed PubMed Central Google Scholar
He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).
Article CAS PubMed PubMed Central Google Scholar
She, J. et al. The landscape of hervRNAs transcribed from human endogenous retroviruses across human body sites. Genome Biol. 23, 231 (2022).
Article CAS PubMed PubMed Central Google Scholar
Burn, A., Roy, F., Freeman, M. & Coffin, J. M. Widespread expression of the ancient HERV-K (HML-2) provirus group in normal human tissues. PLoS Biol. 20, e3001826 (2022). Together with She et al. (2022), this paper provides an in-depth, locus-specific atlas of HERV RNA expression in various healthy human tissues.
Article CAS PubMed PubMed Central Google Scholar
Coffin, J. M. et al. (eds) Retroviruses (Cold Spring Harbor Laboratory, 1997).
Robasky, K., Lewis, N. E. & Church, G. M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2014).
Article CAS PubMed Google Scholar
Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).
Article PubMed PubMed Central Google Scholar
Berrens, R. V. et al. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat. Biotechnol. 40, 546–554 (2021). This paper is a cutting-edge bioinformatics pipeline that provides the highest definition of expression of transposable elements from long-read single-cell RNA sequencing.
Article PubMed PubMed Central Google Scholar
Troskie, R.-L. et al. Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome. Genome Biol. 22, 146 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).
Article CAS PubMed Google Scholar
Lerat, E. Recent bioinformatic progress to identify epigenetic changes associated to transposable elements. Front. Genet. 13, 891194 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Quiroz, R. & Valdebenito-Maturana, B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun. Biol. 5, 1063 (2022).
Article PubMed PubMed Central Google Scholar
Tokuyama, M. et al. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl Acad. Sci. USA 115, 12565–12572 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bendall, M. L. et al. Telescope: characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput. Biol. 15, e1006453 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).
Article CAS PubMed PubMed Central Google Scholar
Jeong, H.-H., Yalamanchili, H. K., Guo, C., Shulman, J. M. & Liu, Z. in Biocomputing 2018 Vol. 23, 168–179 (World Scientific, 2018).
Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).
Article PubMed PubMed Central Google Scholar
Tristem, M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730 (2000).
Comments (0)