Activation of human endogenous retroviruses and its physiological consequences

Nisole, S. & Saïb, A. Early steps of retrovirus replicative cycle. Retrovirology 1, 9 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).

Article  CAS  PubMed  Google Scholar 

de Parseval, N. & Heidmann, T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet. Genome Res. 110, 318–332 (2005). Together with Jern and Coffin (2008), this paper is a seminal review article that discusses in detail the foundational studies of endogenous retroviruses.

Article  PubMed  Google Scholar 

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

Article  CAS  PubMed  Google Scholar 

Vargiu, L. et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13, 7 (2016). This paper is a comprehensive characterization and annotation of the complex HERV structures scattered throughout the human genome.

Article  PubMed  PubMed Central  Google Scholar 

Chang, Y.-H. & Dubnau, J. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat. Commun. 14, 966 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dopkins, N. et al. A field guide to endogenous retrovirus regulatory networks. Mol. Cell 82, 3763–3768 (2022).

Article  CAS  PubMed  Google Scholar 

Yang, B. et al. Species-specific KRAB-ZFPs function as repressors of retroviruses by targeting PBS regions. Proc. Natl Acad. Sci. USA 119, e2119415119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707.e8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bannert, N. & Kurth, R. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genom. Hum. Genet. 7, 149–173 (2006).

Article  CAS  Google Scholar 

Turelli, P. et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24, 1260–1270 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groh, S. et al. Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nat. Commun. 12, 5996 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).

Article  CAS  PubMed  Google Scholar 

Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

Article  PubMed  Google Scholar 

Ha, H. et al. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genom. 15, 545 (2014).

Article  Google Scholar 

Whitelaw, E. & Martin, D. I. K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).

Article  CAS  PubMed  Google Scholar 

Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

Article  CAS  PubMed  Google Scholar 

Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).

Article  PubMed  Google Scholar 

Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e8 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

She, J. et al. The landscape of hervRNAs transcribed from human endogenous retroviruses across human body sites. Genome Biol. 23, 231 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burn, A., Roy, F., Freeman, M. & Coffin, J. M. Widespread expression of the ancient HERV-K (HML-2) provirus group in normal human tissues. PLoS Biol. 20, e3001826 (2022). Together with She et al. (2022), this paper provides an in-depth, locus-specific atlas of HERV RNA expression in various healthy human tissues.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coffin, J. M. et al. (eds) Retroviruses (Cold Spring Harbor Laboratory, 1997).

Robasky, K., Lewis, N. E. & Church, G. M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2014).

Article  CAS  PubMed  Google Scholar 

Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Berrens, R. V. et al. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat. Biotechnol. 40, 546–554 (2021). This paper is a cutting-edge bioinformatics pipeline that provides the highest definition of expression of transposable elements from long-read single-cell RNA sequencing.

Article  PubMed  PubMed Central  Google Scholar 

Troskie, R.-L. et al. Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome. Genome Biol. 22, 146 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

Article  CAS  PubMed  Google Scholar 

Lerat, E. Recent bioinformatic progress to identify epigenetic changes associated to transposable elements. Front. Genet. 13, 891194 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez-Quiroz, R. & Valdebenito-Maturana, B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun. Biol. 5, 1063 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Tokuyama, M. et al. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl Acad. Sci. USA 115, 12565–12572 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bendall, M. L. et al. Telescope: characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput. Biol. 15, e1006453 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong, H.-H., Yalamanchili, H. K., Guo, C., Shulman, J. M. & Liu, Z. in Biocomputing 2018 Vol. 23, 168–179 (World Scientific, 2018).

Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Tristem, M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif