Enhanced epicurzerenone production via in vitro elicitation of microrhizomes of Curcuma caesia Roxb.

Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877. https://doi.org/10.1038/nprot.2007.102

Article  CAS  PubMed  Google Scholar 

Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621. https://doi.org/10.3390/12030607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. In: Methods in enzymology, vol 113. Academic Press, pp 548–555. https://doi.org/10.1016/S0076-6879(85)13073-9

Anjum A, Singh V, Adil S, Quraishi A (2022) In vitro propagation of Curcuma caesia Roxb. via bud culture technique and ISSR profiling of the plantlets for genetic homogeneity. Res J Biotechnol 17:48–54. https://doi.org/10.25303/1712rjbt48054

Article  Google Scholar 

Arya OP, Adhikari P, Pandey A, Bhatt ID, Mohanty K (2022) Health-promoting bioactive phenolic compounds in different solvent extracts of Curcuma caesia Roxb. rhizome from North-East India. J Food Process Pres 46:e16805. https://doi.org/10.1111/jfpp.16805

Article  CAS  Google Scholar 

Astha SPS, Sangha MK (2019) Influence of different SAR elicitors on induction and expression of PR-proteins in potato and muskmelon against oomycete pathogens. Indian Phytopathol 72:43–51. https://doi.org/10.1007/s42360-018-0100-5

Article  Google Scholar 

Benya A, Mohanty S, Hota S, Das AP, Rath CC, Achary KG, Singh S (2023) Endangered Curcuma caesia Roxb.: qualitative and quantitative analysis for identification of industrially important elite genotypes. Ind Crop Prod 195:116363. https://doi.org/10.1016/j.indcrop.2023.116363

Article  CAS  Google Scholar 

Biesalski HK, Dragsted LO, Elmadfa I, Grossklaus R, Muller M, Schrenk D, Walter P, Weber P (2009) Bioactive compounds: definition and assessment of activity. Nutrition 25:1202–1205. https://doi.org/10.1016/j.nut.2009.04.023

Article  PubMed  Google Scholar 

Borah A, Paw M, Gogoi R, Loying R, Sarma N, Munda S, Pandey SK, Lal M (2019) Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: an endangered medicinal plant of North East India. Ind Crop Prod 129:448–454. https://doi.org/10.1016/j.indcrop.2018.12.035

Article  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

Article  CAS  Google Scholar 

Chauhan R, Keshavkant S, Quraishi A (2018) Enhanced production of diosgenin through elicitation in micro-tubers of Chlorophytum borivilianum Sant. et Fernand. Ind Crop Prod 113:234–239. https://doi.org/10.1016/j.indcrop.2018.01.029

Article  CAS  Google Scholar 

Chiappero J, del Rosario CL, Palermo TB, Giordano W, Khan N, Banchio E (2021) Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind Crop Prod 167:113541. https://doi.org/10.1016/j.indcrop.2021.113541

Article  CAS  Google Scholar 

Cui H, Zhang B, Li G, Li L, Chen H, Qi J, Liu W, Chen J, Wang P, Lei H (2019) Identification of a quality marker of vinegar-processed Curcuma zedoaria on oxidative liver injury. Molecules 24:2073. https://doi.org/10.3390/molecules24112073

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhindsa RS, Dhindsa PP, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93

Article  CAS  Google Scholar 

Dosoky NS, Satyal P, Setzer WN (2019) Variations in the volatile compositions of Curcuma species. Foods 8:53. https://doi.org/10.3390/foods8020053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubois M, Gilles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

Article  CAS  Google Scholar 

Dumanovic J, Nepovimova E, Natic M, Kuca K, Jacevic V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:552969. https://doi.org/10.3389/fpls.2020.552969

Article  PubMed  PubMed Central  Google Scholar 

Ekka G, Jadhav SK, Quraishi A (2020) Effect of exogenous additives on oxidative stress and defense system of a tree – Zanthoxylum armatum DC. under in vitro conditions. Plant Cell Tiss Org Cult 140:671–676. https://doi.org/10.1007/s11240-019-01759-4

Article  CAS  Google Scholar 

El-Beltagi HS, Mohamed HI, Aldaej MI, Al-Khayri JM, Rezk AA, Al-Mssallem MQ, Sattar MN, Ramadan KM (2022) Production and antioxidant activity of secondary metabolites in Hassawi rice (Oryza sativa L.) cell suspension under salicylic acid, yeast extract, and pectin elicitation. In vitro Cell Dev Biol - Plant 58:615–629. https://doi.org/10.1007/s11627-022-10264-x

Article  CAS  Google Scholar 

Fraternale D, Sosa S, Ricci D, Genovese S, Messina F, Tomasini S, Montanari F, Marcotullio MC (2011) Anti-inflammatory, antioxidant and antifungal furanosesquiterpenoids isolated from Commiphora erythraea (Ehrenb.) Engl. resin. Fitoterapia 82:654–661. https://doi.org/10.1016/j.fitote.2011.02.002

Article  CAS  PubMed  Google Scholar 

FRLHT- Foundation for Revitalisation of Local Health Traditions (2019) http://envis.frlht.org/junclist.php?txtbtname=Curcuma+caesia+ROXB.&gesp=4610%7CCurcuma+caesia+ROXB

Ghorai N, Chakraborty S, Gucchait S, Saha SK, Biswas S (2012) Estimation of total terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc Exch 5:1–5. https://doi.org/10.1038/protex.2012.055

Article  Google Scholar 

Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384. https://doi.org/10.3390/antiox8090384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal D, Agrawal SB (2021) Ultraviolet-B induced changes in physiology, phenylpropanoid pathway, and essential oil composition in two Curcuma species (C. caesia Roxb. and C. longa L.). Ecotox Environ Safe 208:111739. https://doi.org/10.1016/j.ecoenv.2020.111739

Article  CAS  Google Scholar 

Jaiswal D, Pandey A, Mukherjee A, Agrawal M, Agrawal SB (2020) Alterations in growth, antioxidative defense and medicinally important compounds of Curcuma caesia Roxb. under elevated ultraviolet-B radiation. Environ Exp Bot 177:104152. https://doi.org/10.1016/j.envexpbot.2020.104152

Article  CAS  Google Scholar 

Jaiswal N, Verma Y, Misra P (2022) Elicitation enhanced the production of bioactive compound and biomass accumulation in callus cultures of Glycyrrhiza glabra L. In vitro Cell Dev Biol - Plant 58:427–436. https://doi.org/10.1007/s11627-021-10227-8

Article  CAS  Google Scholar 

Jena S, Ray A, Sahoo A, Panda PC, Nayak S (2020) Deeper insight into the volatile profile of essential oil of two Curcuma species and their antioxidant and antimicrobial activities. Ind Crop Prod 155:112830. https://doi.org/10.1016/j.indcrop.2020.112830

Article  CAS  Google Scholar 

Khan T, Khan T, Hano C, Abbasi BH (2019) Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Ind Crop Prod 129:525–535. https://doi.org/10.1016/j.indcrop.2018.12.048

Article  CAS  Google Scholar 

Khuntia S, Sahoo BC, Lenka J, Kar B, Sahoo S (2023) In-silico prediction and in vitro validation of antioxidant, antibacterial and antifungal potential of black turmeric (Curcuma caesia Roxb.) essential oils and its constituents. Ind Crop Prod 203:117185. https://doi.org/10.1016/j.indcrop.2023.117185

Article  CAS  Google Scholar 

Liu ZB, Chen JG, Yin ZP, Shangguan XC, Peng DY, Lu T, Lin P (2018) Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell Tiss Org Cult 134:79–93. https://doi.org/10.1007/s11240-018-1401-1

Article  CAS  Google Scholar 

Maehly AC, Chance B (1959) The assay of catalase and peroxidase. In: Glick D (ed) Methods of biochemical analysis, vol 1. Interscience Publishers, New York, pp 357–425

Chapter  Google Scholar 

Mala M, Norrizah JS, Azani S (2021) In vitro seed germination and elicitation of phenolics and flavonoids in in vitro germinated Trigonella foenum graecum plantlets. Biocatal Agric Biotechnol 32:101907. https://doi.org/10.1016/j.bcab.2021.101907

Article  CAS  Google Scholar 

Male CKA, Ratala RN, Sirisha SNVL, Saidulu P (2022) Chemical characterisation of components present in rhizomes of Curcuma aromatica by gas chromatography-mass spectroscopy method. Eur J Mol Clin Med 9:730–735

Google Scholar 

Mendoza D, Cuaspud O, Arias JP, Ruiz O, Arias M (2018) Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol Rep 19:e00273. https://doi.org/10.1016/j.btre.2018.e00273

Article  Google Scholar 

Miclea I, Suhani A, Zahan M, Bunea A (2020) Effect of jasmonic acid and salicylic acid on growth and biochemical composition of in-vitro-propagated Lavandula angustifolia Mill. Agronomy 10:1722. https://doi.org/10.3390/agronomy10111722

Article  CAS  Google Scholar 

Mukunthan KS, Satyan RS, Patel TN (2017) Pharmacological evaluation of phytochemicals from South Indian black turmeric (Curcuma caesia Roxb.) to target cancer apoptosis. J Ethnopharmacol 209:82–90. https://doi.org/10.1016/j.jep.2017.07.021

Article  CAS  PubMed 

Comments (0)

No login
gif