Development of a robust propagation protocol, assessment of genetic fidelity, and metabolite analysis of Benth

Aggarwal G, Sharma C, Srivastava DK (2012) Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall.) using leaf explants. Ann For Res 55:179–188. https://doi.org/10.15287/afr.2012.58.

Agulló-Antón MÁ, Sánchez-Bravo J, Acosta M, Druege U (2011) Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J Plant Growth Regul 30:100–113. https://doi.org/10.1007/s00344-010-9174-8

Article  CAS  Google Scholar 

Ajithan C, Vasudevan V, Sathish D, Sathish S, Krishnan V, Manickavasagam M (2019) The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tiss Org Cult 139:547-561. https://doi.org/10.1007/s11240-019-01699-z

Alekseeva LI (2004) Ecdysone 20-monooxygenase activity of cytochrome P 450 in Ajuga reptans L. plants and cell culture. Appl Biochem Microbiol 40:135–139. https://doi.org/10.1023/B:ABIM.0000018915.75810.a7

Article  CAS  Google Scholar 

Al-Hussaini ZA, Yousif SHA, Al-Ajeely SA (2015) Effect of different media on callus induction and regeneration in potato cultivars. Int J Curr Microbiol Appl Sci 4:856–865

CAS  Google Scholar 

Ali H, Khan MA, Kayani WK, Khan T, Khan RS (2018) Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Ind Crops Prod 121:418–427. https://doi.org/10.1016/j.indcrop.2018.05.043

Article  CAS  Google Scholar 

Ali HM, Khan T, Khan MA, Ullah N (2022) The multipotent thidiazuron: a mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol Appl Biochem 69:2624–2640. https://doi.org/10.1002/bab.2311

Article  CAS  PubMed  Google Scholar 

Ayoola-Oresanya IO, Sonibare MA, Gueye B, Abberton MT, Morlock GE (2021) Elicitation of antioxidant metabolites in Musa species in vitro shoot culture using sucrose, temperature and jasmonic acid. Plant Cell Tiss Org Cult 146:225–236. https://doi.org/10.1007/s11240-021-02062-x

Article  CAS  Google Scholar 

Beauchamp PS, Bottini AT, Caselles MC, Dev V, Hope H, Larter M, Lee G, Mathela CS, Melkani AB, Millar PD, Miyatake M (1996) Neo-clerodane diterpenoids from Ajuga parviflora. Phytochemistry 43:827–834. https://doi.org/10.1016/0031-9422(96)00207-5

Article  CAS  Google Scholar 

Bukhari NA, Siddique I, Perveen K (2016) Preculturing effect of thidiazuron on in vitro shoot multiplication and micropropagation round in Capparis decidua (Forsk.), an important multipurpose plant. Acta Biol Hung 67:297–304. https://doi.org/10.1556/018.67.2016.3.7

Article  PubMed  Google Scholar 

Chaachouay N, Zidane L (2024) Plant-derived natural products: a source for drug discovery and development. Drugs Drug Candidate 3:184–207. https://doi.org/10.3390/ddc3010011

Article  Google Scholar 

Cheng DM, Yousef GG, Grace MH, Rogers RB, Gorelick-Feldman J, Raskin I, Lila MA (2008) In vitro production of metabolism-enhancing phytoecdysteroids from Ajuga turkestanica. Plant Cell Tiss Org Cult 93:73–83. https://doi.org/10.1007/s11240-008-9345-5

Article  CAS  Google Scholar 

Chung HH, Ouyang HY (2020) Use of thidiazuron for high-frequency callus induction and organogenesis of wild strawberry (Fragaria vesca). Plants 10:67. https://doi.org/10.3390/plants10010067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui XH, Murthy HN, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Org Cult 103:7–14. https://doi.org/10.1007/s11240-010-9747-z

Article  CAS  Google Scholar 

Dinani ET, Shukla MR, Turi CE, Sullivan JA, Saxena PK (2018) Thidiazuron: modulator of morphogenesis in vitro. In: Ahmad N, Faisal M (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore, pp 1–36. https://doi.org/10.1007/978-981-10-8004-3_1

Din NU, Ali H, Shah SK, Israr S, Ali A, Sher M, Khan RS, Khan MA (2019) Relationship of light intensity and quality with callus biomass and antioxidant potential in Ajuga bracteosa. Intl J Biosci 15:506–516. https://doi.org/10.12692/ijb/15.1.506-516

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

Google Scholar 

El-Banna MF, Farag NB, Massoud HY, Kasem MM (2023) Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiol Biochem 197:107639. https://doi.org/10.1016/j.plaphy.2023.107639

Eshbakova KA, Zakirova RP, Khasanova KI, Bobakulov KM, Aisa HA, Sagdullaev SS, Nosov AM (2019) Phenylpropanoids from callus tissue of Ajuga turkestanica. Chem Nat Compd 55:28–31. https://doi.org/10.1007/s10600-019-02608-8

Article  CAS  Google Scholar 

Filippova VN, Zorinyants SE, Volodina SO, Smolenskaya IN (2003) Cell cultures of ecdysteroid-containing Ajuga reptans and Serratula coronata plants. Russ J Plant Physiol 50:501–508. https://doi.org/10.1023/A:1024772723879

Article  CAS  Google Scholar 

Gupta S, Mao AA, Sarma S (2020) Effects of thidiazuron (TDZ) on direct shoot organogenesis of Gymnocladus assamicus: a threatened and critically endangered species from Northeast India. Proc Natl Acad Sci Lett 43:85–91. https://doi.org/10.1007/s40009-019-00801-5

Article  CAS  Google Scholar 

Hansen J, Møller IB (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94. https://doi.org/10.1016/0003-2697(75)90682-X

Article  CAS  PubMed  Google Scholar 

Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AMM, Ming LC, Pagano E, Capasso R (2021) Andrographis paniculata (Burm. F.) Wall. Ex Nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life 11:348. https://doi.org/10.3390/life11040348

Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33:105–119. https://doi.org/10.1007/BF01983223

Article  CAS  Google Scholar 

Hughes NM, Lev-Yadun S (2023) Why do some plants have leaves with red or purple undersides? Environ Exp Bot 205:105126. https://doi.org/10.1016/j.envexpbot.2022.105126

Article  Google Scholar 

Hussain SA, Ahmad N, Anis M, Hakeem KR (2019) Development of an efficient micropropagation system for Tecoma stans (L.) Juss. ex Kunth using thidiazuron and effects on phytochemical constitution. In Vitro Cell Dev Biol - Plant 55:442–453. https://doi.org/10.1007/s11627-019-10001-x

Article  CAS  Google Scholar 

Jan M, Singh S, Kaloo ZA, Maqbool F (2014) Callus induction and multiple shoot regeneration in Ajuga bracteosa Wall. ex Benth. an important medicinal plant growing in Kashmir Himalaya. J Sci Ind Res 3:319–324

Google Scholar 

Joshi R, Shukla A, Sairam RK (2011) In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Acta Physiol Plant 33:2209–2217. https://doi.org/10.1007/s11738-011-0760-6

Article  CAS  Google Scholar 

Joshi R, Shukla A, Kumar P (2013) In vitro water deficit stress-induced genotypic alterations in protein profile among aromatic rice varieties. Ann Plant Sci 2:455–458

Google Scholar 

Joshi PR, Pandey S, Maharjan L, Pant B (2023) Micropropagation and assessment of genetic stability of Dendrobium transparens wall. Ex Lindl. Using RAPD and ISSR markers. Front Conserv Sci 3:1083933.  https://doi.org/10.3389/fcosc.2022.1083933

Kaul S, Das S, Srivastava PS (2013) Micropropagation of Ajuga bracteosa, a medicinal herb. Physiol Mol Biol Plant 19:289–296. https://doi.org/10.1007/s12298-012-0161-3

Article  CAS  Google Scholar 

Kaur J, Mudgal G (2020) An efficient protocol for micropropagation of small-flowered bugleweed (Ajuga parviflora). Plant Cell Biotechnol Mol Biol 21:16–22. https://ikprress.org/index.php/PCBMB/article/view/5750

Kumar D, Kumari V, Kumar D (2023) Metabolite profiling, antidiabetic, and antioxidant potential of different tissues of Trillium govanianum Wall. ex D. Don S Afr J Bot 153:102–108. https://doi.org/10.1016/j.sajb.2022.12.019

Article  CAS  Google Scholar 

Kumar D, Kumari V, Kumar D (2024) Organs-specific metabolomics and anticholinesterase activity suggests a trade-off between metabolites for therapeutic advantages of Trillium govanianum Wall. ex D. Don. Sci Rep 14:10675. https://doi.org/10.1038/s41598-024-61160-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari A, Joshi S, Dar AI, Joshi R (2023c) Physio-biochemical integrators and transcriptome analysis reveal nano-elicitation associated response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne micropropagation. Genes 14:1725. https://doi.org/10.3390/genes14091725

Kumari A, Joshi S, Dar AI, Joshi R (2024a) Physiological responses and transcriptomic profiles unveil pivotal genes and pathways implicated in nano-elicited in vitro shoot proliferation of Bambusa balcooa. Plant Cell Tiss Org Cult 158:9. https://doi.org/10.1007/s11240-024-02812-7

Article  CAS  Google Scholar 

Kumari A, Kumar A, Singh S, Joshi R (2023b) Synergistic interaction between morpho-physiological traits linked with the propagation of bamboo species through culm and rhizome (offset) cuttings. S Afr J Bot 155:196–204. https://doi.org/10.1016/j.sajb.2023.02.008

Article  CAS  Google Scholar 

Kumari V, Goel A, Kumar D, Padwad Y, Kumar D (2024) Quality control method (UPLC-PDA) of Ajuga parviflora Benth. and its antiadipogenic effect on differentiated preadipocytes. J Herb Med 48:100950. https://doi.org/10.1016/j.hermed.2024.100950

Article  Google Scholar 

Kumari V, Kumar D, Bhardwaj R (2023c) Metabolome analysis, nutrient and antioxidant potential of aerial and underground parts of Ajuga parviflora Benth. Microchem J 187:108451. https://doi.org/10.1016/j.microc.2023.108451

Article  CAS  Google Scholar 

Madhavi DL, Smith MAL, Linas AC, Mitiku G (1997) Accumulation of ferulic acid in cell cultures of Ajuga pyramidalis metallica crispa. J Agric Food Chem 45:1506–1508. https://doi.org/10.1021/jf9607831

Comments (0)

No login
gif