ElSayed, N. A. et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes – 2023. Diabetes Care 46, S19–S40 (2022).
Article PubMed Central Google Scholar
Szendroedi, J. et al. Cohort profile: the German Diabetes Study (GDS). Cardiovasc. Diabetol. 15, 59 (2016).
Article PubMed PubMed Central Google Scholar
Tabák, A. G. et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373, 2215–2221 (2009).
Article PubMed PubMed Central Google Scholar
Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019). A comprehensive review describing the current understanding of the development of T2DM, specifically addressing the role of lipid mediators.
Article CAS PubMed Google Scholar
He, X., Kuang, G., Wu, Y. & Ou, C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 11, e468 (2021).
Article CAS PubMed PubMed Central Google Scholar
Agbu, P. & Carthew, R. W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol. 22, 425–438 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mastrototaro, L. & Roden, M. Insulin resistance and insulin sensitizing agents. Metabolism 125, 154892 (2021).
Article CAS PubMed Google Scholar
Isaac, R., Reis, F. C. G., Ying, W. & Olefsky, J. M. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33, 1744–1762 (2021).
Article CAS PubMed PubMed Central Google Scholar
James, D. E., Stöckli, J. & Birnbaum, M. J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 22, 751–771 (2021).
Article CAS PubMed Google Scholar
White, M. F. & Kahn, C. R. Insulin action at a molecular level – 100 years of progress. Mol. Metab. 52, 101304 (2021). A review focusing on the molecular biology of the insulin signalling cascade.
Article CAS PubMed PubMed Central Google Scholar
Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).
Donath, M. Y., Dinarello, C. A. & Mandrup-Poulsen, T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat. Rev. Immunol. 19, 734–746 (2019).
Article CAS PubMed Google Scholar
Mirzadeh, Z., Faber, C. L. & Schwartz, M. W. Central nervous system control of glucose homeostasis: a therapeutic target for type 2 diabetes? Annu. Rev. Pharmacol. Toxicol. 62, 55–84 (2022).
Article PubMed PubMed Central Google Scholar
Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology https://doi.org/10.1016/j.jhep.2023.06.003 (2023).
Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).
Herder, C. & Roden, M. A novel diabetes typology: towards precision diabetology from pathogenesis to treatment. Diabetologia 65, 770–1781 (2022).
Morze, J. et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45, 1013–1024 (2022). This meta-analysis illustrates the association of numerous lipids and amino acids with increased risk of insulin resistance and T2DM.
Article CAS PubMed PubMed Central Google Scholar
Steinhauser, M. L. et al. The circulating metabolome of human starvation. JCI Insight 3, e121434 (2018).
Article PubMed PubMed Central Google Scholar
Yuan, S., Merino, J. & Larsson, S. C. Causal factors underlying diabetes risk informed by Mendelian randomisation analysis: evidence, opportunities and challenges. Diabetologia 66, 800–812 (2023). This review discusses the findings of Mendelian randomization studies with regard to causality in the development of T2DM.
Article PubMed PubMed Central Google Scholar
Gancheva, S., Jelenik, T., Álvarez-Hernández, E. & Roden, M. Interorgan metabolic crosstalk in human insulin resistance. Physiol. Rev. 98, 1371–1415 (2018). This review addresses the mechanisms by which metabolites contribute to inter-organ crosstalk in the context of insulin resistance.
Article CAS PubMed Google Scholar
Gassaway, B. M. et al. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc. Natl Acad. Sci. USA 115, e8996–e9005 (2018).
Article CAS PubMed PubMed Central Google Scholar
Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859–2865 (1996).
Article CAS PubMed PubMed Central Google Scholar
Stingl, H. et al. Lipid-dependent control of hepatic glycogen stores in healthy humans. Diabetologia 44, 48–54 (2001).
Article CAS PubMed Google Scholar
Boden, G. & Chen, X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J. Clin. Invest. 96, 1261–1268 (1995).
Article CAS PubMed PubMed Central Google Scholar
Szendroedi, J. et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl Acad. Sci. USA 111, 9597–9602 (2014).
Article CAS PubMed PubMed Central Google Scholar
Nowotny, B. et al. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 62, 2240–2248 (2013).
Article CAS PubMed PubMed Central Google Scholar
Sarabhai, T. et al. Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia 65, 301–314 (2022). This clinical study shows how differently saturated lipids activate specific cellular pathways to induce insulin resistance in healthy humans.
Article CAS PubMed Google Scholar
Lyu, K. et al. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab. 32, 654–664.e5 (2020). An interesting study showing the deleterious role of sn-1,2-diacylglycerol in insulin signalling pathways, in humans indirectly by its high levels in the circulation of people with insulin resistance, and in animals directly by showing its mechanism of action.
Article CAS PubMed PubMed Central Google Scholar
Lyu, K. et al. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight 6, e139946 (2021).
PubMed PubMed Central Google Scholar
Jelenik, T. et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver. Diabetes 66, 2241–2253 (2017).
Article CAS PubMed PubMed Central Google Scholar
Jelenik, T. et al. Insulin resistance and vulnerability to cardiac ischemia. Diabetes 67, 2695–2702 (2018).
Article PubMed PubMed Central Google Scholar
Brandon, A. E. et al. Protein kinase C epsilon deletion in adipose tissue, but not in liver, improves glucose tolerance. Cell Metab. 29, 183–191.e7 (2019).
Article CAS PubMed Google Scholar
Bódis, K. & Roden, M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Invest. 48, e13017 (2018).
Iqbal, J., Walsh, M. T., Hammad, S. M. & Hussain, M. M. Sphingolipids and lipoproteins in health and metabolic disorders. Trends Endocrinol. Metab. 28, 506–518 (2017).
Article CAS PubMed PubMed Central Google Scholar
Mah, M., Febbraio, M. & Turpin-Nolan, S. Circulating ceramides – are origins important for sphingolipid biomarkers and treatments? Front. Endocrinol. 12, 684448 (2021).
Zarini, S. et al. Serum dihydroceramides correlate with insulin sensitivity in humans and decrease insulin sensitivity in vitro. J. Lipid Res. 63, 100270 (2022).
Article CAS PubMed PubMed Central Google Scholar
Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).
Comments (0)