Accelerated DNA methylation age plays a role in the impact of cardiovascular risk factors on the human heart

Harman D. Aging: overview. Ann N Y Acad Sci. 2001;928:1–21. https://doi.org/10.1111/j.1749-6632.2001.tb05631.x.

Article  CAS  PubMed  Google Scholar 

Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. J Gerontol A Biol Sci Med Sci. 2014;69:640–9. https://doi.org/10.1093/gerona/glt162.

Article  PubMed  Google Scholar 

Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 2017;21:29–36. https://doi.org/10.1016/j.ebiom.2017.03.046.

Article  PubMed  PubMed Central  Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67. https://doi.org/10.1016/j.molcel.2012.10.016.

Article  CAS  PubMed  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol (Online Edn). 2013;14:R115–R115. https://doi.org/10.1186/gb-2013-14-10-r115.

Article  Google Scholar 

Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany, NY). 2018;10:573–91. https://doi.org/10.18632/aging.101414.

Article  PubMed  Google Scholar 

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany, NY). 2019;11:303–27. https://doi.org/10.18632/aging.101684.

Article  CAS  PubMed  Google Scholar 

Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, Ploubidis GB, Goodman A, Kuh D, Bell JT, et al. DNA methylation age and physical and cognitive ageing. 2019.

Maddock J, Castillo-Fernandez J, Wong A, Ploubidis GB, Kuh D, Bell JT, Hardy R. Childhood growth and development and DNA methylation age in mid-life. 2021.

Pavanello S, Campisi M, Fabozzo A, Cibin G, Tarzia V, Toscano G, Gerosa G. The biological age of the heart is consistently younger than chronological age. Sci Rep. 2020;10:10752–10752. https://doi.org/10.1038/s41598-020-67622-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi EJ, Lee SY. Index of Cardiac Age Index and cardiometabolic biomarkers in adults with metabolic syndrome. Metab Syndr Relat Disord. 2021;19:288–95. https://doi.org/10.1089/met.2020.0095.

Article  CAS  PubMed  Google Scholar 

Raisi-Estabragh Z, Salih A, Gkontra P, Atehortúa A, Radeva P, Boscolo Galazzo I, Menegaz G, Harvey NC, Lekadir K, Petersen SE. Estimation of biological heart age using cardiovascular magnetic resonance radiomics. Sci Rep. 2022;12:12805–12805. https://doi.org/10.1038/s41598-022-16639-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro AH, Ribeiro MH, Paixão GMM, Oliveira DM, Gomes PR, Canazart JA, Ferreira MPS, Andersson CR, Macfarlane PW, Wagner M Jr, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11:1760–1760. https://doi.org/10.1038/s41467-020-15432-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima EM, Ribeiro AH, Paixão GMM, Ribeiro MH, Pinto-Filho MM, Gomes PR, Oliveira DM, Sabino EC, Duncan BB, Giatti L, et al. Deep neural network-estimated electrocardiographic age as a mortality predictor. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-25351-7.

Article  PubMed  PubMed Central  Google Scholar 

Lindow T, Palencia-Lamela I, Schlegel TT, Ugander M. Heart age estimated using explainable advanced electrocardiography. Sci Rep. 2022;12:9840–9840. https://doi.org/10.1038/s41598-022-13912-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML, Beasley JM, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany, NY). 2017;9:419–46. https://doi.org/10.18632/aging.101168.

Article  CAS  PubMed  Google Scholar 

Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, Nemeroff CB, Smith AK, Bradley B, Heim C, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biol. 2015;16:266–266. https://doi.org/10.1186/s13059-015-0828-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget. 2016;7:74510–25. https://doi.org/10.18632/oncotarget.12903.

Article  PubMed  PubMed Central  Google Scholar 

Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya P, Guan WH, Xu T, Elks CE, Aslibekyan S, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47. https://doi.org/10.1161/CIRCGENETICS.116.001506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, Marioni RE, Hedman Å, Pfeiffer L, Tsai PC, Reynolds LM, Just AC, Duan Q, Boer CG, Tanaka T, et al. A DNA methylation biomarker of alcohol consumption. 2018.

Niiranen TJ, Vasan RS. Epidemiology of cardiovascular disease: recent novel outlooks on risk factors and clinical approaches. Expert Rev Cardiovasc Ther. 2016;14:855–69. https://doi.org/10.1080/14779072.2016.1176528.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roetker NSNS, Pankow JSJS, Bressler JJ, Morrison ACAC, Boerwinkle EE. A prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the Atherosclerosis Risk in Communities (ARIC) Study. Circul Genom Precis Med. 2018;11:e001937–e001937. https://doi.org/10.1161/CIRCGEN.117.001937.

Article  Google Scholar 

Dick KJP, Nelson CPP, Tsaprouni LP, Sandling JKP, Aïssi DM, Wahl SM, Meduri EP, Morange P-EP, Gagnon FP, Grallert HP, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet (British Edition). 2014;383:1990–8. https://doi.org/10.1016/S0140-6736(13)62674-4.

Article  CAS  Google Scholar 

Chambers JCD, Loh MP, Lehne BP, Drong AP, Kriebel JP, Motta VP, Wahl SM, Elliott HRDB, Rota FP, Scott WRM, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3:526–34. https://doi.org/10.1016/S2213-8587(15)00127-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation (New York, NY). 2014;130:565–72. https://doi.org/10.1161/CIRCULATIONAHA.114.009158.

Article  CAS  Google Scholar 

Roberts ML, Kotchen TA, Pan X, Li Y, Yang C, Liu P, Wang T, Laud PW, Chelius TH, Munyura Y, et al. Unique associations of DNA methylation regions with 24-hour blood pressure phenotypes in black participants. Hypertension (Dallas, Tex 1979). 2022;79:761–72. https://doi.org/10.1161/HYPERTENSIONAHA.121.18584.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia Y, Brewer A, Bell JT. DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin Epigenet. 2021. https://doi.org/10.1186/s13148-021-01175-6.

Article  Google Scholar 

Stenzig J, Schneeberger Y, Löser A, Peters BS, Schaefer A, Zhao R-R, Ng SL, Höppner G, Geertz B, Hirt MN, et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 2018;120:53–63. https://doi.org/10.1016/j.yjmcc.2018.05.012.

Article  CAS  PubMed  Google Scholar 

Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, McDonald K, Ledwidge M, Baugh J. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. 2016;21:127–37. https://doi.org/10.1177/1074248415591698.

Article  CAS  PubMed  Google Scholar 

Cao Q, Wang X, Jia L, Mondal AK, Diallo A, Hawkins GA, Das SK, Parks JS, Yu L, Shi H, et al. Inhibiting DNA methylation by 5-aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology (Philadelphia). 2014;155:4925–38. https://doi.org/10.1210/en.2014-1595.

Article  CAS  Google Scholar 

Kuh D, Pierce M, Adams J, Deanfield J, Ekelund U, Friberg P, Ghosh AK, Harwood N, Hughes A, Macfarlane PW, et al. Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. Int J Epidemiol. 2011;40(1):e1–9.

Article  PubMed  PubMed Central  Google Scholar 

Ball R, Feiveson A, Schlegel T, Starc V, Dabney A. Predicting, “Heart Age” using electrocardiography. J Person Med. 2014;4:65–78. https://doi.org/10.3390/jpm4010065.

Article  Google Scholar 

Schlegel TT, Kulecz WB, Feiveson AH, Greco EC, Depalma JL, Starc V, Vrtovec B, Rahman MA, Bungo MW, Hayat MJ, et al. Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction. BMC Cardiovasc Disord. 2010;10:28. https://doi.org/10.1186/1471-2261-10-28.

Article  PubMed  PubMed Central  Google Scholar 

Gleeson S, Liao Y-W, Dugo C, Cave A, Zhou L, Ayar Z, Christiansen J, Scott T, Dawson L, Gavin A, et al. ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction. PLoS ONE. 2017;12:e0171069. https://doi.org/10.1371/journal.pone.0171069.

Article  CAS 

Comments (0)

No login
gif