Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).
Article CAS PubMed PubMed Central Google Scholar
Costanzo, M. et al. Environmental robustness of the global yeast genetic interaction network. Science 372, eabf8424 (2021).
Article CAS PubMed PubMed Central Google Scholar
Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).
Article CAS PubMed PubMed Central Google Scholar
Hohmann, S. & Mager, W. H. Yeast Stress Responses (Springer Science & Business Media, 2007).
Gutin, J., Sadeh, A., Rahat, A., Aharoni, A. & Friedman, N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol. Syst. Biol. 11, 829 (2015).
Article PubMed PubMed Central Google Scholar
Bahn, Y.-S. et al. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5, 57–69 (2007).
Article CAS PubMed Google Scholar
Schulz, J. C., Zampieri, M., Wanka, S., von Mering, C. & Sauer, U. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Sci. Signal. 7, rs6 (2014).
Oliveira, A. P. et al. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci. Signal. 8, rs4 (2015).
Paulo, J. A., O’Connell, J. D., Gaun, A. & Gygi, S. P. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol. Biol. Cell 26, 4063–4074 (2015).
Article CAS PubMed PubMed Central Google Scholar
Gutin, J., Joseph-Strauss, D., Sadeh, A., Shalom, E. & Friedman, N. Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Mol. Syst. Biol. 15, e8939 (2019).
Article PubMed PubMed Central Google Scholar
Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).
Article CAS PubMed PubMed Central Google Scholar
Brauer, M. J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).
Article CAS PubMed PubMed Central Google Scholar
Viéitez, C. et al. High-throughput functional characterization of protein phosphorylation sites in yeast. Nat. Biotechnol. 40, 382–390 (2022).
Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteom. 4, 310–327 (2005).
Smolka, M. B., Albuquerque, C. P., Chen, S.-H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007).
Article CAS PubMed PubMed Central Google Scholar
Saleem, R. A. et al. Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction. Mol. Cell. Proteom. 9, 2076–2088 (2010).
Oliveira, A. P. et al. Regulation of yeast central metabolism by enzyme phosphorylation. Mol. Syst. Biol. 8, 623 (2012).
Article PubMed PubMed Central Google Scholar
Vaga, S. et al. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast. Mol. Syst. Biol. 10, 767 (2014).
Article PubMed PubMed Central Google Scholar
Kanshin, E., Bergeron-Sandoval, L.-P., Isik, S. S., Thibault, P. & Michnick, S. W. A cell-signaling network temporally resolves specific versus promiscuous phosphorylation. Cell Rep. 10, 1202–1214 (2015).
Article CAS PubMed Google Scholar
Kanshin, E., Kubiniok, P., Thattikota, Y., D'Amours, D. & Thibault, P. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Mol. Syst. Biol. 11, 813 (2015).
Article PubMed PubMed Central Google Scholar
MacGilvray, M. E. et al. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput. Biol. 13, e1006088 (2018).
Article PubMed PubMed Central Google Scholar
Leutert, M., Rodríguez‐Mias, R. A., Fukuda, N. K. & Villén, J. R2‐P2 rapid‐robotic phosphoproteomics enables multidimensional cell signaling studies. Mol. Syst. Biol. 15, e9021 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lanz, M. C. et al. In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep. 22, e51121 (2021).
Article CAS PubMed PubMed Central Google Scholar
Holt, L. J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).
Article CAS PubMed PubMed Central Google Scholar
Soste, M. et al. A sentinel protein assay for simultaneously quantifying cellular processes. Nat. Methods 11, 1045–1048 (2014).
Article CAS PubMed Google Scholar
Plank, M. et al. Chemical genetics of AGC-kinases reveals shared targets of Ypk1, protein kinase A and Sch9. Mol. Cell. Proteom. 19, 655–671 (2020).
Dokládal, L. et al. Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep. 37, 110149 (2021).
Bodenmiller, B. et al. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3, rs4 (2010).
Article CAS PubMed PubMed Central Google Scholar
Li, J., Paulo, J. A., Nusinow, D. P., Huttlin, E. L. & Gygi, S. P. Investigation of proteomic and phosphoproteomic responses to signaling network perturbations reveals functional pathway organizations in yeast. Cell Rep. 29, 2092–2104.e4 (2019).
Article CAS PubMed PubMed Central Google Scholar
van Wageningen, S. et al. Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 143, 991–1004 (2010).
Article PubMed PubMed Central Google Scholar
da Silveira Dos Santos, A. X. et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25, 3234–3246 (2014).
Article PubMed PubMed Central Google Scholar
Lawrence, R. T., Searle, B. C., Llovet, A. & Villén, J. Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat. Methods 13, 431–434 (2016).
Article CAS PubMed PubMed Central Google Scholar
Searle, B. C., Lawrence, R. T., MacCoss, M. J. & Villén, J. Thesaurus: quantifying phosphopeptide positional isomers. Nat. Methods 16, 703–706 (2019).
Article CAS PubMed PubMed Central Google Scholar
Searle, B. C. et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat. Commun. 9, 5128 (2018).
Article PubMed PubMed Central Google Scholar
Beausoleil, S. A., Villén, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).
Article CAS PubMed Google Scholar
Ochoa, D. et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373 (2020).
Article CAS PubMed Google Scholar
Pentony, M. M., Ward, J. & Jones, D. T. in Proteome Bioinformatics (eds Hubbard, S. J. & Jones, A. R.) 369–393 (Humana Press, 2010).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Comments (0)