The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology

Casida, J. E. & Bryant, R. J. The ABCs of pesticide toxicology: amounts, biology, and chemistry. Toxicol. Res. 6, 755–763 (2017).

Article  CAS  Google Scholar 

Sparks, T. C. et al. Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification—a tool for resistance management. Pestic. Biochem. Physiol. 167, 104587 (2020).

Article  CAS  PubMed  Google Scholar 

Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casida, J. E. & Quistad, G. B. Why insecticides are more toxic to insects than people: the unique toxicology of insects. J. Pestic. Sci. 29, 81–86 (2004).

Article  CAS  Google Scholar 

Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

Article  CAS  Google Scholar 

Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

Article  Google Scholar 

Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. Eng. China 7, 177 (2019).

Article  Google Scholar 

Ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016). In-depth review on ion-channel insecticide targets, with a focus on genetics, molecular biology and occurrence of resistance.

Casida, J. E. & Durkin, K. A. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58, 99–117 (2013).

Article  CAS  PubMed  Google Scholar 

Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 79, 1–14 (1996). The basis of ion channels’ potential as insecticide targets, because small imbalances in activity have tremendous effects.

Article  CAS  PubMed  Google Scholar 

Song, J. H. & Narahashi, T. Modulation of sodium channels of rat cerebellar Purkinje neurons by the pyrethroid tetramethrin. J. Pharmacol. Exp. Ther. 277, 445–453 (1996).

CAS  PubMed  Google Scholar 

Harrison, P. J., Vecerkova, T., Clare, D. K. & Quigley, A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J. Struct. Biol. 215, 107959 (2023).

Article  CAS  PubMed  Google Scholar 

Robertson, M. J., Meyerowitz, J. G. & Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 47, 124–135 (2021). Review showing the potential of structure-based drug discovery with a focus on membrane proteins.

Article  PubMed  PubMed Central  Google Scholar 

Bloomquist, J. R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41, 163–190 (1996).

Article  CAS  PubMed  Google Scholar 

Howard, R. J. Elephants in the dark: insights and incongruities in pentameric ligand-gated ion channel models. J. Mol. Biol. 433, 167128 (2021). Summary of the structural knowledge of pLGICs and their ligand-modulated activation mechanism.

Article  CAS  PubMed  Google Scholar 

Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).

Article  PubMed  Google Scholar 

Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 27, 569–575 (2004).

Article  CAS  PubMed  Google Scholar 

Ratra, G. S., Kamita, S. G. & Casida, J. E. Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol. Appl. Pharmacol. 172, 233–240 (2001).

Article  CAS  PubMed  Google Scholar 

Miller, P. S. & Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors*. J. Biol. Chem. 287, 40224–40231 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudolph, U. & Knoflach, F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 10, 685–697 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019). Structural basis of activation and inhibition of GABAAby competitive and non-competitive substances that reveals important principles for all pLGICs.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gielen, M. & Corringer, P.-J. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J. Physiol. 596, 1873–1902 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott, S. & Aricescu, A. R. A structural perspective on GABAA receptor pharmacology. Curr. Opin. Struct. Biol. 54, 189–197 (2019).

Article  CAS  PubMed  Google Scholar 

McGonigle, I. & Lummis, S. C. R. RDL receptors. Biochem. Soc. Trans. 37, 1404–1406 (2009).

Article  CAS  PubMed  Google Scholar 

Henry, C. et al. Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera. Br. J. Pharmacol. 177, 3924–3940 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casida, J. E. & Durkin, K. A. Novel GABA receptor pesticide targets. Pestic. Biochem. Physiol. 121, 22–30 (2015). Overview of different classes of GABAA-modulating compounds and mapping of their binding sites, revealing general patterns for the modulation of pLGICs.

Article  CAS  PubMed  Google Scholar 

Casida, J. E. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: common genesis, serendipity, surprises, selectivity, and safety. Chem. Res. Toxicol. 28, 560–566 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, L., Durkin, K. A. & Casida, J. E. Structural model for γ-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site. Proc. Natl Acad. Sci. USA 103, 5185–5190 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ffrench-Constant, R. H. & Roush, R. T. Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). Genet. Res. 57, 17–21 (1991).

Article  CAS  PubMed  Google Scholar 

Zhao, C. & Casida, J. E. Insect γ-aminobutyric acid receptors and isoxazoline insecticides: toxicological profiles relative to the binding sites of [3H]fluralaner, [3H]-4′-ethynyl-4-n-propylbicycloorthobenzoate, and [3H]avermectin. J. Agric. Food Chem. 62, 1019–1024 (2014).

Article  CAS  PubMed  Google Scholar 

Bloomquist, J. R. in Biochemical Sites of Insecticide Action and Resistance (ed. Ishaaya, I.) 17–41 (Springer, 2001).

Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011). This paper shows how avermectins allosterically activate GluCl (and some other pLGICs) by binding to the pore domain from the outside.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemecz, Á., Prevost, M. S., Menny, A. & Corringer, P.-J. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90, 452–470 (2016).

Article  CAS  PubMed  Google Scholar 

Changeux, J.-P. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily*. J. Biol. Chem. 287, 40207–40215 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, A. K. & Sattelle, D. B. in Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) Ch. 3 (Springer, 2010).

Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967–989 (2005).

Comments (0)

No login
gif