Casida, J. E. & Bryant, R. J. The ABCs of pesticide toxicology: amounts, biology, and chemistry. Toxicol. Res. 6, 755–763 (2017).
Sparks, T. C. et al. Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification—a tool for resistance management. Pestic. Biochem. Physiol. 167, 104587 (2020).
Article CAS PubMed Google Scholar
Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).
Article CAS PubMed PubMed Central Google Scholar
Casida, J. E. & Quistad, G. B. Why insecticides are more toxic to insects than people: the unique toxicology of insects. J. Pestic. Sci. 29, 81–86 (2004).
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. Eng. China 7, 177 (2019).
Ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016). In-depth review on ion-channel insecticide targets, with a focus on genetics, molecular biology and occurrence of resistance.
Casida, J. E. & Durkin, K. A. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58, 99–117 (2013).
Article CAS PubMed Google Scholar
Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 79, 1–14 (1996). The basis of ion channels’ potential as insecticide targets, because small imbalances in activity have tremendous effects.
Article CAS PubMed Google Scholar
Song, J. H. & Narahashi, T. Modulation of sodium channels of rat cerebellar Purkinje neurons by the pyrethroid tetramethrin. J. Pharmacol. Exp. Ther. 277, 445–453 (1996).
Harrison, P. J., Vecerkova, T., Clare, D. K. & Quigley, A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J. Struct. Biol. 215, 107959 (2023).
Article CAS PubMed Google Scholar
Robertson, M. J., Meyerowitz, J. G. & Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 47, 124–135 (2021). Review showing the potential of structure-based drug discovery with a focus on membrane proteins.
Article PubMed PubMed Central Google Scholar
Bloomquist, J. R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41, 163–190 (1996).
Article CAS PubMed Google Scholar
Howard, R. J. Elephants in the dark: insights and incongruities in pentameric ligand-gated ion channel models. J. Mol. Biol. 433, 167128 (2021). Summary of the structural knowledge of pLGICs and their ligand-modulated activation mechanism.
Article CAS PubMed Google Scholar
Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).
Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).
Article CAS PubMed PubMed Central Google Scholar
Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 27, 569–575 (2004).
Article CAS PubMed Google Scholar
Ratra, G. S., Kamita, S. G. & Casida, J. E. Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol. Appl. Pharmacol. 172, 233–240 (2001).
Article CAS PubMed Google Scholar
Miller, P. S. & Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).
Article CAS PubMed PubMed Central Google Scholar
Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors*. J. Biol. Chem. 287, 40224–40231 (2012).
Article CAS PubMed PubMed Central Google Scholar
Rudolph, U. & Knoflach, F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 10, 685–697 (2011).
Article CAS PubMed PubMed Central Google Scholar
Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).
Article CAS PubMed PubMed Central Google Scholar
Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).
Article PubMed PubMed Central Google Scholar
Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019). Structural basis of activation and inhibition of GABAAby competitive and non-competitive substances that reveals important principles for all pLGICs.
Article CAS PubMed PubMed Central Google Scholar
Gielen, M. & Corringer, P.-J. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J. Physiol. 596, 1873–1902 (2018).
Article CAS PubMed PubMed Central Google Scholar
Scott, S. & Aricescu, A. R. A structural perspective on GABAA receptor pharmacology. Curr. Opin. Struct. Biol. 54, 189–197 (2019).
Article CAS PubMed Google Scholar
McGonigle, I. & Lummis, S. C. R. RDL receptors. Biochem. Soc. Trans. 37, 1404–1406 (2009).
Article CAS PubMed Google Scholar
Henry, C. et al. Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera. Br. J. Pharmacol. 177, 3924–3940 (2020).
Article CAS PubMed PubMed Central Google Scholar
Casida, J. E. & Durkin, K. A. Novel GABA receptor pesticide targets. Pestic. Biochem. Physiol. 121, 22–30 (2015). Overview of different classes of GABAA-modulating compounds and mapping of their binding sites, revealing general patterns for the modulation of pLGICs.
Article CAS PubMed Google Scholar
Casida, J. E. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: common genesis, serendipity, surprises, selectivity, and safety. Chem. Res. Toxicol. 28, 560–566 (2015).
Article CAS PubMed Google Scholar
Chen, L., Durkin, K. A. & Casida, J. E. Structural model for γ-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site. Proc. Natl Acad. Sci. USA 103, 5185–5190 (2006).
Article CAS PubMed PubMed Central Google Scholar
Ffrench-Constant, R. H. & Roush, R. T. Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). Genet. Res. 57, 17–21 (1991).
Article CAS PubMed Google Scholar
Zhao, C. & Casida, J. E. Insect γ-aminobutyric acid receptors and isoxazoline insecticides: toxicological profiles relative to the binding sites of [3H]fluralaner, [3H]-4′-ethynyl-4-n-propylbicycloorthobenzoate, and [3H]avermectin. J. Agric. Food Chem. 62, 1019–1024 (2014).
Article CAS PubMed Google Scholar
Bloomquist, J. R. in Biochemical Sites of Insecticide Action and Resistance (ed. Ishaaya, I.) 17–41 (Springer, 2001).
Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011). This paper shows how avermectins allosterically activate GluCl (and some other pLGICs) by binding to the pore domain from the outside.
Article CAS PubMed PubMed Central Google Scholar
Nemecz, Á., Prevost, M. S., Menny, A. & Corringer, P.-J. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90, 452–470 (2016).
Article CAS PubMed Google Scholar
Changeux, J.-P. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily*. J. Biol. Chem. 287, 40207–40215 (2012).
Article CAS PubMed PubMed Central Google Scholar
Jones, A. K. & Sattelle, D. B. in Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) Ch. 3 (Springer, 2010).
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967–989 (2005).
Comments (0)