Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis

McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry. 2023.

Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.

Article  PubMed  PubMed Central  Google Scholar 

Goff DC, Li C, Thorpe L. Does early intervention improve the long-term course of schizophrenia? Am J Psychiatry. 2020;177(4):288–90.

Article  PubMed  Google Scholar 

Lally J, et al. Remission and recovery from first-episode psychosis in adults: systematic review and meta-analysis of long-term outcome studies. Br J Psychiatry. 2017;211(6):350–8.

Article  PubMed  Google Scholar 

AlAqeel B, Margolese HC. Remission in schizophrenia: critical and systematic review. Harv Rev Psychiatry. 2013;20(6):281–97.

Article  Google Scholar 

Cuenod M, et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022;27(4):1886–97.

Article  CAS  PubMed  Google Scholar 

Steullet P, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res. 2016;176(1):41–51.

Article  CAS  PubMed  Google Scholar 

Demjaha A, et al. Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors. Psychol Med. 2017;47(11):1981–9.

Article  CAS  PubMed  Google Scholar 

Kaar SJ, et al. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020;172:107704.

Article  CAS  PubMed  Google Scholar 

McCutcheon RA, Marques TR, Howes OD. Schizophrenia—an overview. JAMA Psychiat. 2020;77(2):201–10.

Article  Google Scholar 

• Perkins DO, Jeffries CD, Do KQ. Potential roles of redox dysregulation in the development of schizophrenia. Biol Psychiatry. 2020. This paper provides a summary of the evidence supporting redox dysregulation as a pathological mechanism driving the development of psychosis.

Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–34.

Article  CAS  PubMed  Google Scholar 

Henkel ND, et al. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry. 2022;27(5):2393–404.

Article  CAS  PubMed  Google Scholar 

Balasubramanian V. Brain power. Proc Natl Acad Sci. 2021;118(32):e2107022118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts RC. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion. 2021;56:91–101.

Article  CAS  PubMed  Google Scholar 

Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020;205:107426.

Article  CAS  PubMed  Google Scholar 

Hyder F, et al. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J Cereb Blood Flow Metab. 2013;33(3):339–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kowalczyk P, et al. Mitochondrial oxidative stress-a causative factor and therapeutic target in many diseases. Int J Mol Sci. 2021;22(24).

Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiat. 2013;74(6):400–9.

Article  CAS  PubMed  Google Scholar 

Hjelm BE, et al. Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Complex Psychiatry. 2015;1(4):201–19.

Article  Google Scholar 

Zuccoli GS, et al. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2023:1–16.

da Silveira Paulsen B, et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 2012;21(7):1547–59.

Article  Google Scholar 

Kathuria A, et al. Disease-specific differences in gene expression, mitochondrial function and mitochondria-endoplasmic reticulum interactions in iPSC-derived cerebral organoids and cortical neurons in schizophrenia and bipolar disorder. Discover Mental Health. 2023;3(1):8.

Article  PubMed  PubMed Central  Google Scholar 

Townsend L, et al. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med. 2022:1–18.

Chouinard VA, et al. Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Mol Psychiatry. 2019;24(10):1513–22.

Article  CAS  PubMed  Google Scholar 

Yuksel C, et al. Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res. 2015;68:157–66.

Article  PubMed  Google Scholar 

• Du F, et al. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiat. 2014;71(1):19–27. This paper uses a novel 31P-MT-MRS approach to examine creatine kinase reaction rate and intracellular pH in vivo in chronic schizophrenia pateints. Creatine kinase rate and intracellular pH were significnatly reduced in schizophrenia pateints compared to controls, indicating bionenergetic abnormalities.

Article  CAS  Google Scholar 

Dean B, et al. Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl Psychiatry. 2016;6(11):e949–e949.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prabakaran S, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97.

Article  CAS  PubMed  Google Scholar 

Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res. 2020;223:29–42.

Article  PubMed  Google Scholar 

Rowland LM, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6(11):e967.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wijtenburg SA, et al. Metabolite alterations in adults with schizophrenia, first degree relatives, and healthy controls: a multi-region 7T MRS study. Front Psychiatry. 2021;12:656459.

Article  PubMed  PubMed Central  Google Scholar 

Wang AM, et al. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiat. 2019;76(3):314–23.

Article  Google Scholar 

Wang M, et al. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry. 2023.

Da Silva T, et al. Glutathione, the major redox regulator, in the prefrontal cortex of individuals at clinical high risk for psychosis. Int J Neuropsychopharmacol. 2018;21(4):311–8.

Article  PubMed  Google Scholar 

Park H-J, Choi I, Leem K-H. Decreased brain pH and pathophysiology in schizophrenia. Int J Mol Sci. 2021;22(16):8358.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dogan AE, et al. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies. Neuropsychopharmacology. 2018;43(8):1681–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romeo B, et al. Magnetic resonance spectroscopy studies in subjects with high risk for psychosis: A meta-analysis and review. J Psychiatr Res. 2020;125:52–65.

Article  PubMed  Google Scholar 

Du F, et al. Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med. 2007;57(1):103–14.

Article  CAS  PubMed  Google Scholar 

Du F, et al. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci U S A. 2008;105(17):6409–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab. 2014;34(8):1270–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kole K, et al. Parvalbumin basket cell myelination accumulates axonal mitochondria to internodes. Nat Commun. 2022;13(1):7598.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11(4):275–83.

Article  CAS  PubMed  Google Scholar 

Chouinard V-A, et al. Brain bioenergetics and redox state measured by 31P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders. Schizophr Res. 2017;187:11–6.

Comments (0)

No login
gif