Base editing of organellar DNA with programmable deaminases

Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).

Article  CAS  PubMed  Google Scholar 

Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

Article  CAS  PubMed  Google Scholar 

Daniell, H., Lin, C. S., Yu, M. & Chang, W. J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

Article  PubMed  Google Scholar 

Barrera-Paez, J. D. & Moraes, C. T. Mitochondrial genome engineering coming-of-age. Trends Genet. 38, 869–880 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

Article  CAS  PubMed  Google Scholar 

Yu-Wai-Man, P., Turnbull, D. M. & Chinnery, P. F. Leber hereditary optic neuropathy. J. Med. Genet. 39, 162–169 (2002).

Article  CAS  PubMed  Google Scholar 

Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford Univ. Press, 2005).

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

Article  CAS  PubMed  Google Scholar 

Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, B., Yang, L. & Chen, J. Development and application of base editors. CRISPR J. 2, 91–104 (2019).

Article  PubMed  Google Scholar 

Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

Article  CAS  PubMed  Google Scholar 

Yang, L. & Chen, J. A tale of two moieties: rapidly evolving CRISPR/Cas-based genome editing. Trends Biochem. Sci. 45, 874–888 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

Article  CAS  PubMed  Google Scholar 

Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 34, 101–110 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmiderer, L., Yudovich, D., Oburoglu, L., Hjort, M. & Larsson, J. Site-specific CRISPR-based mitochondrial DNA manipulation is limited by gRNA import. Sci. Rep. 12, 18687 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J. & Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. & Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: from mutator to editor. J. Genet. Genomics 44, 423–437 (2017).

Article  CAS  PubMed  Google Scholar 

Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

Article  CAS  PubMed  Google Scholar 

Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mok, B. Y. et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 40, 1378–1387 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. et al. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol. 23, 211 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mi, L. et al. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat. Commun. 14, 874 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. et al. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol. Cell 83, 1710–1724.e7 (2023).

Article  CAS  PubMed  Google Scholar 

Lim, K., Cho, S. I. & Kim, J. S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat. Commun. 13, 366 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willis, J. C. W., Silva-Pinheiro, P., Widdup, L., Minczuk, M. & Liu, D. R. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat. Commun. 13, 7204 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mok, Y. G. et al. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat. Commun. 13, 4038 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776.e12 (2022).

Article  CAS  PubMed  Google Scholar 

Yi, Z. et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01791-y (2023).

Lee, H. et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat. Commun. 12, 1190 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chol, M. et al. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J. Med. Genet. 40, 188–191 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. et al. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol. Ther. Nucleic Acids 27, 73–80 (2022).

Comments (0)

No login
gif