Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis

Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol Nature Publishing Group; 2018. p. 576–90.

Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte Accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–784e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol. 2017;8:1745.

Article  PubMed  PubMed Central  Google Scholar 

Santos AL, Sinha S. Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev. Elsevier; 2021. p. 101268.

Palmer AK, Kirkland JL. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol. 2016;86:97–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franceschi C. Obesity in geroscience — is cellular senescence the culprit? Nat Rev Endocrinol. 2017;13:76–8. https://www.nature.com/articles/nrendo.2016.213

Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev. 2020;21:e12991. https://link.springer.com/article/10.1007/s40618-020-01255-z.

Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci. 2020;134:315–30. /clinsci/article/134/2/315/221972/The-role-of-adipose-tissue-senescence-in-obesity

Smith U, Li Q, Rydén M, Spalding KL. Cellular senescence and its role in white adipose tissue. Int J Obes. 2021;45:934–43. https://www.nature.com/articles/s41366-021-00757-x

Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA et al. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs. 2008;187:263–74. https://pubmed.ncbi.nlm.nih.gov/18196894/

Gimble JM, Bunnell BA, Floyd ZE. Prospecting for adipose progenitor cell biomarkers: biopanning for gold with in vivo phage display. Cell Stem Cell. 2011;9:1–2. https://pubmed.ncbi.nlm.nih.gov/21683669/

Mangum LH, Natesan S, Stone R, Wrice NL, Larson DA, Florell KF et al. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells. Stem Cells Int. 2017;2017. https://pubmed.ncbi.nlm.nih.gov/29138638/

Mellor LF, Mohiti-Asli M, Williams J, Kannan A, Dent MR, Guilak F et al. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. 2015;21:2323–33. https://www.liebertpub.com/doi/10.1089/ten.tea.2014.0572

Badimon L, Cubedo J. Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovasc Res. 2017;113:1064–73. https://pubmed.ncbi.nlm.nih.gov/28498891/

Zhu X-Y, Ma S, Eirin A, Woollard JR, Hickson LJ, Sun D et al. Functional Plasticity of Adipose-Derived Stromal Cells During Development of Obesity. Stem Cells Transl Med. 2016;5:893–900. https://academic.oup.com/stcltm/article/5/7/893/6397824

Alessio N, Acar MB, Demirsoy IH, Squillaro T, Siniscalco D, Di Bernardo G et al. Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging. 2020;12:12609–21. https://www.aging-us.com/article/103606

Conley SM, Hickson LJ, Kellogg TA, McKenzie T, Heimbach JK, Taner T et al. Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol. 2020;8:197. https://doi.org/10.3389/fcell.2020.00197/full

Gustafson B, Nerstedt A, Smith U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun. 2019;10:2757. https://www.nature.com/articles/s41467-019-10688-x

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6. https://pubmed.ncbi.nlm.nih.gov/19053174/

Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age-related diseases. Semin Immunopathol. 2020;42:545–57. https://pubmed.ncbi.nlm.nih.gov/32747977/

Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18:e12950. https://doi.org/10.1111/acel.12950

Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4.

Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2006;291:R880-4. https://doi.org/10.1152/ajpregu.00280.2006

Sun X, Zou T, Zuo C, Zhang M, Shi B, Jiang Z et al. IL-1α inhibits proliferation and adipogenic differentiation of human adipose-derived mesenchymal stem cells through NF-κB- and ERK1/2-mediated proinflammatory cytokines. Cell Biol Int. 2018;42:794–803. https://doi.org/10.1002/cbin.10932

Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9:667–84. https://doi.org/10.1111/j.1474-9726.2010.00608.x

Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: a hallmark of senescence and aging. Ageing Res Rev. 2021;67:101264.

Article  CAS  PubMed  Google Scholar 

Rocha A, Dalgarno A, Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genomics. 2022;21:24–34. https://pubmed.ncbi.nlm.nih.gov/33755107/

Costa BP, Nassr MT, Diz FM, Fernandes KHA, Antunes GL, Grun LK, et al. Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial cancer cell proliferation. J Ethnopharmacol. 2021;267:113645.

Article  CAS  PubMed  Google Scholar 

Menegotto PR, da Costa Lopez PL, Souza BK, de Farias CB, Filippi-Chiela EC, Vieira IA, et al. Gastrin-releasing peptide receptor Knockdown induces senescence in Glioblastoma cells. Mol Neurobiol. 2017;54:888–94.

Article  CAS  PubMed  Google Scholar 

Filippi-Chiela EC, Oliveira MM, Jurkovski B, Callegari-Jacques SM, da Silva VD, Lenz G. Nuclear Morphometric Analysis (NMA): Screening of Senescence, Apoptosis and Nuclear Irregularities. PLoS One. 2012;7:e42522. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042522

González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288:56–80. https://pubmed.ncbi.nlm.nih.gov/32961620/

Heckenbach I, Mkrtchyan GV, Ezra M, Ben, Bakula D, Madsen JS, Nielsen MH et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nature Aging 2022 2:8. 2022;2:742–55. https://www.nature.com/articles/s43587-022-00263-3

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther. 2018;9:1–13. https://doi.org/10.1186/s13287-017-0740-x

Kim YM, Byun HO, Jee BA, Cho H, Seo YH, Kim YS, et al. Implications of time-series gene expression profiles of replicative senescence. Aging Cell. 2013;12:622–34.

Article  CAS  PubMed  Google Scholar 

Grun LK, Teixeira N, da Mengden R, von, de Bastiani L, Parisi MA, Bortolin MM et al. R,. TRF1 as a major contributor for telomeres’ shortening in the context of obesity. Free Radic Biol Med. 2018;129:286–95. https://linkinghub.elsevier.com/retrieve/pii/S0891584918315521

Loo TM, Miyata K, Tanaka Y, Takahashi A. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci. 2020;111:304–11. https://onlinelibrary.wiley.com/doi/full/10.1111/cas.14266

Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172–83. http://genesdev.cshlp.org/content/31/2/172.full

Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 2012;24:835–45.

Article  CAS  PubMed  Google Scholar 

Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, et al. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol. 2018;17:259–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaur M, Wang L, Amaro Ortiz A, Dobke M, Jordan IK, Lunyak VV. Acute Genotoxic Stress-Induced Senescence in Human Mesenchymal Cells Drives a Unique Composition of Senescence Messaging Secretome (SMS). J Stem Cell Res Ther. 2017;07. https://www.researchgate.net/publication/319625777

Freund A, Patil CK, Campisi J. P38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO Journal. 2011;30:1536–48. https://doi.org/10.1038/emboj.2011.69

Harada G, Neng Q, Fujiki T, Katakura Y. Molecular mechanisms for the p38-induced cellular senescence in normal human fibroblast. J Biochem. 2014;156:283–90. https://academic.oup.com/jb/article/156/5/283/2962286

Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016;23:303–14. https://linkinghub.elsevier.com/retrieve/pii/S1550413115005781

Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J et al. Mitochondria are required for pro‐ageing features of the senescent phenotype. EMBO J. 2016;35:724–42. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.15252/embj.201592862

Wachsmuth M, Hübner A, Li M, Madea B, Stoneking M. Age-Related and Heteroplasmy-Related Variation in Human mtDNA Copy Number. PLoS Genet. 2016;12:e1005939. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005939

Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics. 2017;18:1–14. https://doi.org/10.1186/s12864-017-4287-0

Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6. https://www.nature.com/articles/nature05482

Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4.

Article  PubMed  PubMed Central  Google Scholar 

Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz). Arch Immunol Ther Exp (Warsz); 2016. p. 443–54. https://pubmed.ncbi.nlm.nih.gov/27178663/

Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM et al. Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl Med. 2017;6:1096–108. https://pubmed.ncbi.nlm.nih.gov/28186685/

Murphy J, Tam BT, Kirkland JL, Tchkonia T, Giorgadze N, Pirtskhalava T et al. Senescence markers in subcutaneous preadipocytes differ in childhood- versus adult-onset obesity before and after weight loss. Obesity. 2023;31:1610–9. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/oby.23745

Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:485. https://doi.org/10.3389/fcell.2021.645593/full

Rossiello F, Herbig U, Longhese MP, Fumagalli M. d’Adda di Fagagna F. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev. 2014;26:89–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H, Dai F, Zhuang L, Xiao ZD, Kim J, Zhang Y et al. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget. 2016;7:19134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991371/

Wang Z, Li Y, Wu D, Yu S, Wang Y, Leung Chan F. Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene 2019 39:7. 2019;39:1572–89. https://www.nature.com/articles/s41388-019-1080-3

Kim YY, Jee HJ, Um JH, Kim YM, Bae SS, Yun J. Cooperation between p21 and Akt is required for p53-dependent cellular senescence. Aging Cell. 2017;16:1094–103. https://pubmed.ncbi.nlm.nih.gov/28691365/

Patil P, Dong Q, Wang D, Chang J, Wiley C, Demaria M et al. Systemic clearance of p16INK4a-positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell. 2019;18:e12927. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/acel.12927

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016 530:7589. 2016;530:184–9. https://www.nature.com/articles/nature16932

Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993 366:6456. 1993;366:704–7. https://www.nature.com/articles/366704a0

Aasland D, Gotzinger L, Hauck L, Berte N, Meyer J, Effenberger M et al. Temozolomide induces senescence and repression of DNA repair pathways in glioblastoma cells via activation of ATR–Chk1, p21, and NF-kB. Cancer Res. 2019;79:99–113. https://aacrjournals.org/cancerres/article/79/1/99/634480/Temozolomide-Induces-Senescence-and-Repression-of

Koyano T, Namba M, Kobayashi T, Nakakuni K, Nakano D, Fukushima M et al. The p21 dependent G2 arrest of the cell cycle in epithelial tubular cells links to the early stage of renal fibrosis. Sci Rep. 2019;9:1–11. https://www.nature.com/articles/s41598-019-48557-8

Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012;23:2066–75. https://doi.org/10.1091/mbc.e11-10-0884

Wang L, Wang B, Gasek NS, Zhou Y, Cohn RL, Martin DE, et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 2022;34:75–89e8.

Article  CAS  PubMed  Google Scholar 

Liu J-Y, Souroullas GP, Diekman BO, Krishnamurthy J, Hall BM, Sorrentino JA et al. Cells exhibiting strong p16 INK4a promoter activation in vivo display features of senescence. Proceedings of the National Academy of Sciences. 2019;116:2603–11. https://www.pnas.org/content/116/7/2603

Rouault C, Marcelin G, Adriouch S, Rose C, Genser L, Ambrosini M et al. Senescence-associated β-galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia. 2021;64:240–54. https://doi.org/10.1007/s00125-020-05307-0

Fafián-Labora JA, Morente-López M, Arufe MC. Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells. 2019;11:337–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600848/

Article  PubMed  PubMed Central  Google Scholar 

ISermann A, Mann C, Rübe CE. Histone variant H2A.J marks persistent DNA damage and triggers the secretory phenotype in radiation-induced senescence. Int J Mol Sci. 2020;21:1–20. https://www.mdpi.com/1422-0067/21/23/9130/htm.

Martins F, Sousa J, Pereira CD, da, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell. 2020;19:e13143. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/acel.13143

Matias I, Diniz LP, Damico IV, Araujo APB, Neves L da, Vargas S. G, Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell. 2022;21:e13521. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/acel.13521

Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep. 2017;7:1–8. https://www.nature.com/articles/s41598-017-15901-9

Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J et al. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med. 2022;7:e10250. https://doi.org/10.1002/btm2.10250

Salvestrini V, Sell C, Lorenzini A. Obesity may accelerate the aging process. Front Endocrinol (Lausanne). 2019;10:266.

Article  PubMed  Google Scholar 

Pence BD, Yarbro JR. Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp Gerontol. 2018;108:112–7.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif