Cerrato F, Labow BI. Diagnosis and management of fibroadenomas in the adolescent breast. In: Seminars in plastic surgery. Thieme Medical Publishers, New York; 2013. p. 023–5.
Rodden AM. Common breast concerns. Primary Care: Clin Off Pract. 2009;36:103–13.
Santen RJ, Mansel R. Benign breast disorders. N Engl J Med. 2005;353:275–85.
Jayasinghe Y, Simmons PS. Fibroadenomas in adolescence. Curr Opin Obstet Gynecol. 2009;21:402–6.
Huang Q, Luo Y, Zhang Q. Breast ultrasound image segmentation: a survey. Int J Comput Assist Radiol Surg. 2017;12:493–507.
Luo Y, Huang Q, Li X. Segmentation information with attention integration for classification of breast tumor in ultrasound image. Pattern Recogn. 2022;124: 108427.
Bai J, Posner R, Wang T, Yang C, Nabavi S. Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review. Med Image Anal. 2021;71: 102049.
Salati SA. Breast fibroadenomas: a review in the light of current literature. Pol J Surg. 2021;93:40–8.
Wu G-G, Zhou L-Q, Xu J-W, Wang J-Y, Wei Q, Deng Y-B, et al. Artificial intelligence in breast ultrasound. World J Radiol. 2019;11:19–26.
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv; 2021 Feb. Report No.: arXiv:2102.04306.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin; 2015. p. 234–41.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN et al. Attention is all you need. advances in neural information processing systems (Internet). Curran Associates, Inc.; 2017. Available from: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. Accessed 10 May 2022.
Wang B, Dong P. Multiscale transunet++: dense hybrid U-Net with transformer for medical image segmentation. Signal, Image and Video Processing. 2022;1–8.
Dai Z, Liu H, Le QV, Tan M. Coatnet: Marrying convolution and attention for all data sizes. Adv Neural Inf Process Syst. 2021;34:3965–77.
Xiao T, Singh M, Mintun E, Darrell T, Dollár P, Girshick R. Early convolutions help transformers see better. Adv Neural Inf Process Syst. 2021;34:30392–400.
Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z-H, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF international conference on computer vision; 2021. p. 558–67.
Cui Y, Jiang C, Wang L, Wu G. MixFormer: end-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2022. p. 13608–18.
Pan X, Ge C, Lu R, Song S, Chen G, Huang Z, et al. On the integration of self-attention and convolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2022. p. 815–25.
Dong X, Bao J, Chen D, Zhang W, Yu N, Yuan L, et al. Cswin transformer: a general vision transformer backbone with cross-shaped windows. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2022. p. 12124–34.
Mitsuhara M, Fukui H, Sakashita Y, Ogata T, Hirakawa T, Yamashita T, et al. Embedding human knowledge into deep neural network via attention map. arXiv preprint arXiv:1905.03540. 2019.
Gonzalez-Diaz I. Dermaknet: Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE J Biomed Health Inform. 2018;23:547–59.
Yang Z, Cao Z, Zhang Y, Han M, Xiao J, Huang L, et al. MommiNet: Mammographic multi-view mass identification networks. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., editors. Medical image computing and computer assisted intervention—MICCAI 2020. Cham: Springer; 2020. p. 200–10.
Wu Y, Lin G, Ge J. Knowledge-powered explainable artificial intelligence for network automation toward 6G. IEEE Netw. 2022;36:16–23.
Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, et al. Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2020. p. 1055–9.
Suining central hospital, Sichuan, China. . Available from: https://www.sns120.com. Accessed 28 Aug 2023
Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. 2020;28: 104863.
Breast Ultrasound Dataset B_Bifrost Data Search. Available from: https://datasets.bifrost.ai/info/1320. Accessed 28 Jul 2022.
Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vis. 2008;77:157–73.
Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. Unet++: a nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Berlin; 2018. p. 3–11.
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. European conference on computer vision. Springer; 2014. p. 818–33.
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision; 2021. p. 10012–22.
Rao Y, Zhao W, Tang Y, Zhou J, Lim S-N, Lu J. HorNet: efficient high-order spatial interactions with recursive gated convolutions. arXiv preprint arXiv:2207.14284 2022.
Zhang Y, Chung A. Deep supervision with additional labels for retinal vessel segmentation task. In: International conference on medical image computing and computer-assisted intervention. Springer,Berlin; 2018. p. 83–91.
Shareef B, Xian M, Vakanski A. Stan: Small tumor-aware network for breast ultrasound image segmentation. 2020 IEEE 17th international symposium on biomedical imaging (ISBI). 2020. p. 1–5.
Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge CM, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, et al., editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer; 2017. p. 240–8.
Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE; 2020. p. 1–7.
Liu X, Song L, Liu S, Zhang Y. A review of deep-learning-based medical image segmentation methods. Sustainability. 2021;13:1224.
Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation. International symposium on visual computing. Berlin: Springer; 2016. p. 234–44.
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv:210505537 (cs, eess). 2021; Available from: arXiv:2105.05537. Accessed 10 May 2022
Ding Y, Yang Q, Wang Y, Chen D, Qin Z, Zhang J. MallesNet: a multi-object assistance based network for brachial plexus segmentation in ultrasound images. Medical Image Anal. 2022;80:102511.
Bergman M. Knowledge-based artificial intelligence. AI3:::Adaptive Information. 2014. Available from: https://www.mkbergman.com/1816/knowledge-based-artificial-intelligence/. Accessed 2 Nov 2022.
Comments (0)