Comprehensive simulation study and preliminary results on various shapes of nanopatterns for light extraction improvement in scintillation crystal

Lee J, Lee M. Advancements in positron emission tomography detectors: from silicon photomultiplier technology to artificial intelligence applications. PET Clin. 2024;19:1–24.

Article  MATH  Google Scholar 

Hussain S, et al. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed Res Int. 2022;1:5164970.

Article  MATH  Google Scholar 

Lecoq P. New approaches to improve timing resolution in scintillators. IEEE Trans Nucl Sci. 2012;59(5):2313–8.

Article  MATH  Google Scholar 

Cates JW, Levin CS. Advances in coincidence time resolution for PET. Phys Med Biol. 2016;61(6):2255.

Article  MATH  Google Scholar 

Surti S, Karp JS. Advances in time-of-flight PET. Phys Med. 2016;32:12–22.

Article  MATH  Google Scholar 

Cates JW, Levin CS. Evaluation of a clinical TOF-PET detector design that achieves ≤ 100 ps coincidence time resolution. Phys Med Biol. 2018;63:115011.

Article  MATH  Google Scholar 

Seifert S, Schaart DR. Improving the time resolution of TOF-PET detectors by double-sided readout. IEEE Trans Nucl Sci. 2014;62(1):3–11.

Article  MATH  Google Scholar 

Levin CS. Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci. 2022;49:2236–43.

Article  MATH  Google Scholar 

Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1:473–85.

Article  MATH  Google Scholar 

Lee MS et al. Study of Lutetium-based scintillators for PET system design with 100-ps coincidence time resolution. 2019 IEEE NSS/MIC Conf. Record. 2019.

Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50(5):1325–30.

Article  MATH  Google Scholar 

Lee M, Hyeon S. Simulation study on GAGG and BGO crystals for enhanced light extraction using Nano pattern coating. In: 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors. 2023.

Gramuglia F, et al. Light extraction enhancement techniques for inorganic scintillators. Crystals. 2021;11(4):362.

Article  MATH  Google Scholar 

Wang Z, et al. Needs, trends, and advances in scintillators for radiographic imaging and tomography. IEEE Trans Nucl Sci. 2023;70(7):1244–80.

Article  MATH  Google Scholar 

Spurrier MA, et al. Effects of Ca2+ Co-doping on the scintillation properties of LSO: Ce. IEEE Trans Nucl Sci. 2008;55(3):1178–82.

Article  MATH  Google Scholar 

Carr Delgado H, et al. Toward “super-scintillation” with nanomaterials and nanophotonics. Nanophotonics. 2024;13(11):1953–62.

Article  MATH  Google Scholar 

Kim Y et al. High-Q plasmonic resonance modes for purcell enhanced scintillation. 2023 IEEE NSS/MIC Conf. Record. 2023.

Kurman Y et al. Photonic-crystal scintillators- molding the flow of light to enhance x-ray and γ-ray detection. Phys Rev Lett 2020

Shultzman A, et al. Enhanced imaging using inverse design of nanophotonic scintillators. Adv Opt Mater. 2023;11(8):2202318.

Article  Google Scholar 

Park H, et al. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett. 2022;12(3):263–83.

Article  MATH  Google Scholar 

Borghi G, et al. A 32 mm × 32 mm × 22 mm monolithic LYSO: Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI. Phys Med Biol. 2016;61(13):4929.

Article  MATH  Google Scholar 

Kilimchuk IV, et al. Study of surface roughness of CsI: Tl crystals treated by various abrasives. IEEE Trans Nucl Sci. 2009;56(5):2966–71.

Article  MATH  Google Scholar 

Kiyokawa M, et al. Tracking the same fast-LGSO crystals by changing surface treatments for better coincidence timing resolution in PET. Biomed Phys Eng Express. 2023;9(2):025005.

Article  MATH  Google Scholar 

Berg E, et al. Optimizing light transport in scintillation crystals for time-of-flight PET—an experimental and optical Monte Carlo simulation study. Biomed Opt Express. 2015;6(6):2220–30. https://doi.org/10.1364/BOE.6.002220.

Article  MATH  Google Scholar 

Ren S, et al. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Med Phys. 2014;41(7):072503. https://doi.org/10.1118/1.4881097.

Article  MATH  Google Scholar 

Kang HG, et al. Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI detector. BPEX. 2020;6(6):065028. https://doi.org/10.1088/2057-1976/abc45a.

Article  MATH  Google Scholar 

Kang HG, et al. Optimization of GFAG crystal surface treatment for SiPM based TOF PET detector. BPEX. 2020;8(2):025025. https://doi.org/10.1088/2057-1976/ac56c6.

Article  MATH  Google Scholar 

Gonzalez-Montoro A, et al. Study of optical reflectors for a 100ps coincidence time resolution TOF-PET detector design. BPEX. 2021;7(6):065008. https://doi.org/10.1088/2057-1976/ac240e.

Article  MATH  Google Scholar 

Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58(20):2059.

Article  MATH  Google Scholar 

Singh B, et al. Enhanced scintillation light extraction using nanoimprinted photonic crystals. IEEE TNS. 2018;65(4):1059–65. https://doi.org/10.1109/TNS.2018.2811646.

Article  MATH  Google Scholar 

Pots RH, et al. Improving light output and coincidence time resolution of scintillating crystals using nanoimprinted photonic crystal slabs. NIMA. 2019;940:254–61. https://doi.org/10.1016/j.nima.2019.06.026.

Article  Google Scholar 

Kronberger M, et al. Probing the concepts of photonic crystals on scintillating materials. IEEE Trans Nucl Sci. 2008;55(3):1102–6.

Article  MATH  Google Scholar 

Knapitsch A, et al. Review on photonic crystal coatings for scintillators. Int J Mod Phys A. 2014;29(30):1430070.

Article  Google Scholar 

Salomoni M, et al. Enhancing light extraction of inorganic scintillators using photonic crystals. Crystals. 2018;8(2):78.

Article  MATH  Google Scholar 

Yoon C, et al. Estimate of the 225 Ac radioactive isotope distribution by means of Compton imaging in targeted alpha radiotherapy: a Monte Carlo simulation. J Korean Phys Soc. 2020;76:954–60.

Article  MATH  Google Scholar 

Liyanaarachchi MR, et al. Prototype detector for intraoperative PET-laparoscope system with a multi-layer movable detector. Nucl Instrum Methods Phys Res A. 2020;958:162788.

Article  Google Scholar 

Jiang J, et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J Nucl Sci Technol. 2016;53(7):1067–75.

Article  MATH  Google Scholar 

Jeon Y, et al. Highly efficient and reliable organic light-emitting diodes enabled by a multifunctional hazy substrate for extreme environments. Adv Func Mater. 2023;34(18):231068. https://doi.org/10.1002/adfm.202310268.

Article  MATH  Google Scholar 

Kozlova NS, et al. Optical characteristics of single crystal Gd3Al2Ga3O12: Ce. Mod Electron Mater. 2018;4(1):7–12.

Article  MATH  Google Scholar 

SiPM glass window data sheet/ Performance Comparison of Depth-Encoding Detectors Based on Dual-Ended Readout and Different SiPMs for High-Resolution PET Applications / SensL 2018. Array J -high fill-factor arrays of J-Series SiPM sensors ArrayJ User Manual.

Hyeon S, et al. Improving light collection efficiency using partitioned light guide on pixelated scintillator-based γ-ray imager. Nucl Eng Technol. 2022;54(5):1760–8.

Article  MATH  Google Scholar 

Lee H, et al. Feasibility study of a lens-coupled charge-coupled device gamma camera. J Korean Phys Soc. 2011;59(6):3631–5.

Article  MATH  Google Scholar 

Jan S, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543.

Article  MATH  Google Scholar 

Spanoudaki VC, et al. Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors. 2010;10:10484–505.

Article 

Comments (0)

No login
gif