F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, G. Fortino, “A survey on deep learning in medicine: Why, how and when?,” Information Fusion, Elsevier, 66:111–137 (2021).
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, “Intriguing properties of neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv:1312.6199 (December 21, 2013).
J. Ker, L. Wang, J. Rao, T. Lim, “Deep learning applications in medical image analysis,” IEEE Access, 6:9375–9389 (2017).
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, 15:1:1929–1958 (2014).
C. Shorten, T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, Springer, 6:1:1–48 (2019).
T. Fushiki, “Estimation of prediction error by using k-fold cross-validation,” Statistics and Computing, Springer, 21:137–146 (2011).
S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, S. Udluft, “Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning,” in International Conference on Machine Learning, 1184–1193 (2018).
L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, M. Bennamoun, “Hands-on bayesian neural networks–a tutorial for deep learning users,” IEEE Computational Intelligence Magazine, 17:2:29–48 (2022).
Ł. Raczkowski, M. Możejko, J. Zambonelli, E. Szczurek, “Ara: accurate, reliable and active histopathological image classification framework with bayesian deep learning,” Scientific reports, Nature, 9:1:Article number: 14347 (2019).
B. Song, S. Sunny, S. Li, K. Gurushanth, P. Mendonca, N. Mukhia, S. Patrick, S. Gurudath, S. Raghavan, I. Tsusennaro, S. T. Leivon, T. Kolur, V. Shetty, V. R. Bushan, R. Ramesh, T. Peterson, V. Pillai, P. Wilder-Smith, A. Sigamani, A. Suresh, A. Kuriakose, P. Birur, R. Liang, “Bayesian deep learning for reliable oral cancer image classification,” Biomedical Optics Express, Optica Publishing Group, 12:10:6422–6430 (2021).
S. Yadav, “Bayesian deep learning based convolutional neural network for classification of parkinson’s disease using functional magnetic resonance images,” SSRN, https://doi.org/10.2139/ssrn.3833760 (April 25, 2021).
A. A. Abdullah, M. H. Masoud, T. M. Yaseen, “A review on bayesian deep learning in healthcare: Applications and challenges,” IEEE Access, 10:36538–36562 (2022).
D. M. Blei, A. Kucukelbir, J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American statistical Association, 112:518:859–877 (2017).
C. J. Geyer, “Introduction to markov chain monte carlo,” Handbook of markov chain monte carlo, Chapter 1 20116022, Boca Raton (2011).
Y. Gal, Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in International Conference on Machine Learning, 1050–1059 (2016).
V. Mullachery, A. Khera, A. Husain, “Bayesian neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv:1801.07710 (January 23, 2018).
C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, “Weight uncertainty in neural network,” in International Conference on Machine Learning, 1613–1622 (2015).
D. P. Kingma, T. Salimans, M. Welling, “Variational dropout and the local reparameterization trick,” Advances in neural information processing systems 28, NIPS (2015).
A. D. Wechalekar, J. D. Gillmore, P. N. Hawkins, “Systemic amyloidosis,” The Lancet, Elsevier, 387:10038:2641–2654 (2016).
A. Martinez-Naharro, P. N. Hawkins, M. Fontana, “Cardiac amyloidosis,” Clinical Medicine, Royal College of Physicians, 18:Suppl.2:30–35 (2018).
M. Rosenzweig, H. Landau, “Light chain (al) amyloidosis: update on diagnosis and management,” Journal of Hematology & Oncology, Springer, 4:1–8 (2011).
F. L. Ruberg, M. Grogan, M. Hanna, J. W. Kelly, M. S. Maurer, “Transthyretin amyloid cardiomyopathy: Jacc state-of-the-art review,” Journal of the American College of Cardiology, JACC, 73:22:2872–2891 (2019).
Article CAS PubMed Google Scholar
M. F. Santarelli, D. Genovesi, V. Positano, M. Scipioni, G. Vergaro, B. Favilli, A. Giorgetti, M. Emdin, L. Landini, P. Marzullo, “Deep-learning-based cardiac amyloidosis classification from early acquired pet images,” The International Journal of Cardiovascular Imaging, Springer, 37:7:2327–2335 (2021).
M. Santarelli, M. Scipioni, D. Genovesi, A. Giorgetti, P. Marzullo, L. Landini, “Imaging techniques as an aid in the early detection of cardiac amyloidosis.,” Current Pharmaceutical Design, Bentham Science, 27:16:1878–1889 (2021).
Y. J. Kim, S. Ha, Y.-i. Kim, “Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis,” Journal of Nuclear Cardiology, Springer, 27:123–132 (2020).
D. Genovesi, G. Vergaro, A. Giorgetti, P. Marzullo, M. Scipioni, M. F. Santarelli, A. Pucci, G. Buda, E. Volpi, M. Emdin, “[18f]-florbetaben pet/ct for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions,” Cardiovascular Imaging, JACC, 14:1:246–255 (2021).
J. D. Gillmore, A. Wechalekar, J. Bird, J. Cavenagh, S. Hawkins, M. Kazmi, H. J. Lachmann, P. N. Hawkins, G. Pratt, B. Committee, “Guidelines on the diagnosis and investigation of al amyloidosis,” British journal of haematology, 168:2:207–218 (2015).
Article CAS PubMed Google Scholar
J. D. Gillmore, M. S. Maurer, R. H. Falk, G. Merlini, T. Damy, A. Dispenzieri, A. D. Wechalekar, J. L. Berk, C. C. Quarta, M. Grogan, H. J. Lachmann, S. Bokhari, A. Castano, S. Dorbala, G. B. Johnson, A. W. J. M. Glaudemans, T. Rezk, M. Fontana, G. Palladini, P. Milani, P. L. Guidalotti, K. Flatman, T. Lane, F. W. Vonberg, C. J. Whelan, J. C. Moon, F. L. Ruberg, E. J. Miller, D. F. Hutt, B. P. Hazenberg, C. Rapezzi, P. N. Hawkins, “Nonbiopsy diagnosis of cardiac transthyretin amyloidosis,” Circulation, AHA, 133:24:2404–2412 (2016).
S. Imambi, K. B. Prakash, G. Kanagachidambaresan, “Pytorch,” Programming with TensorFlow: Solution for Edge Computing Applications, Springer, 87–104 (2021).
P. Esposito, “Blitz - bayesian layers in torch zoo (a bayesian deep learing library for torch), github.” https://github.com/piEsposito/blitz-bayesian-deep-learning/ (2020).
T. DeVries, W. T. Graham, “Learning confidence for out-of-distribution detection in neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv.1802.04865 (February 13, 2018).
A. Uchendu, D. Campoy, C. Menart, A. Hildenbrandt, “Robustness of bayesian neural networks to white-box adversarial attacks,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 72–80 (2021).
Comments (0)