Bayesian Convolutional Neural Networks in Medical Imaging Classification: A Promising Solution for Deep Learning Limits in Data Scarcity Scenarios

F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, G. Fortino, “A survey on deep learning in medicine: Why, how and when?,” Information Fusion, Elsevier, 66:111–137 (2021).

Article  Google Scholar 

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, “Intriguing properties of neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv:1312.6199 (December 21, 2013).

J. Ker, L. Wang, J. Rao, T. Lim, “Deep learning applications in medical image analysis,” IEEE Access, 6:9375–9389 (2017).

Article  Google Scholar 

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, 15:1:1929–1958 (2014).

Google Scholar 

C. Shorten, T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, Springer, 6:1:1–48 (2019).

Google Scholar 

T. Fushiki, “Estimation of prediction error by using k-fold cross-validation,” Statistics and Computing, Springer, 21:137–146 (2011).

Article  Google Scholar 

S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, S. Udluft, “Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning,” in International Conference on Machine Learning, 1184–1193 (2018).

L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, M. Bennamoun, “Hands-on bayesian neural networks–a tutorial for deep learning users,” IEEE Computational Intelligence Magazine, 17:2:29–48 (2022).

Article  Google Scholar 

Ł. Raczkowski, M. Możejko, J. Zambonelli, E. Szczurek, “Ara: accurate, reliable and active histopathological image classification framework with bayesian deep learning,” Scientific reports, Nature, 9:1:Article number: 14347 (2019).

B. Song, S. Sunny, S. Li, K. Gurushanth, P. Mendonca, N. Mukhia, S. Patrick, S. Gurudath, S. Raghavan, I. Tsusennaro, S. T. Leivon, T. Kolur, V. Shetty, V. R. Bushan, R. Ramesh, T. Peterson, V. Pillai, P. Wilder-Smith, A. Sigamani, A. Suresh, A. Kuriakose, P. Birur, R. Liang, “Bayesian deep learning for reliable oral cancer image classification,” Biomedical Optics Express, Optica Publishing Group, 12:10:6422–6430 (2021).

Article  CAS  Google Scholar 

S. Yadav, “Bayesian deep learning based convolutional neural network for classification of parkinson’s disease using functional magnetic resonance images,” SSRN, https://doi.org/10.2139/ssrn.3833760 (April 25, 2021).

A. A. Abdullah, M. H. Masoud, T. M. Yaseen, “A review on bayesian deep learning in healthcare: Applications and challenges,” IEEE Access, 10:36538–36562 (2022).

Article  Google Scholar 

D. M. Blei, A. Kucukelbir, J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American statistical Association, 112:518:859–877 (2017).

Article  CAS  Google Scholar 

C. J. Geyer, “Introduction to markov chain monte carlo,” Handbook of markov chain monte carlo, Chapter 1 20116022, Boca Raton (2011).

Y. Gal, Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in International Conference on Machine Learning, 1050–1059 (2016).

V. Mullachery, A. Khera, A. Husain, “Bayesian neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv:1801.07710 (January 23, 2018).

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, “Weight uncertainty in neural network,” in International Conference on Machine Learning, 1613–1622 (2015).

D. P. Kingma, T. Salimans, M. Welling, “Variational dropout and the local reparameterization trick,” Advances in neural information processing systems 28, NIPS (2015).

A. D. Wechalekar, J. D. Gillmore, P. N. Hawkins, “Systemic amyloidosis,” The Lancet, Elsevier, 387:10038:2641–2654 (2016).

Article  CAS  Google Scholar 

A. Martinez-Naharro, P. N. Hawkins, M. Fontana, “Cardiac amyloidosis,” Clinical Medicine, Royal College of Physicians, 18:Suppl.2:30–35 (2018).

Google Scholar 

M. Rosenzweig, H. Landau, “Light chain (al) amyloidosis: update on diagnosis and management,” Journal of Hematology & Oncology, Springer, 4:1–8 (2011).

Google Scholar 

F. L. Ruberg, M. Grogan, M. Hanna, J. W. Kelly, M. S. Maurer, “Transthyretin amyloid cardiomyopathy: Jacc state-of-the-art review,” Journal of the American College of Cardiology, JACC, 73:22:2872–2891 (2019).

Article  CAS  PubMed  Google Scholar 

M. F. Santarelli, D. Genovesi, V. Positano, M. Scipioni, G. Vergaro, B. Favilli, A. Giorgetti, M. Emdin, L. Landini, P. Marzullo, “Deep-learning-based cardiac amyloidosis classification from early acquired pet images,” The International Journal of Cardiovascular Imaging, Springer, 37:7:2327–2335 (2021).

Article  Google Scholar 

M. Santarelli, M. Scipioni, D. Genovesi, A. Giorgetti, P. Marzullo, L. Landini, “Imaging techniques as an aid in the early detection of cardiac amyloidosis.,” Current Pharmaceutical Design, Bentham Science, 27:16:1878–1889 (2021).

Article  CAS  Google Scholar 

Y. J. Kim, S. Ha, Y.-i. Kim, “Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis,” Journal of Nuclear Cardiology, Springer, 27:123–132 (2020).

Article  Google Scholar 

D. Genovesi, G. Vergaro, A. Giorgetti, P. Marzullo, M. Scipioni, M. F. Santarelli, A. Pucci, G. Buda, E. Volpi, M. Emdin, “[18f]-florbetaben pet/ct for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions,” Cardiovascular Imaging, JACC, 14:1:246–255 (2021).

Article  PubMed  Google Scholar 

J. D. Gillmore, A. Wechalekar, J. Bird, J. Cavenagh, S. Hawkins, M. Kazmi, H. J. Lachmann, P. N. Hawkins, G. Pratt, B. Committee, “Guidelines on the diagnosis and investigation of al amyloidosis,” British journal of haematology, 168:2:207–218 (2015).

Article  CAS  PubMed  Google Scholar 

J. D. Gillmore, M. S. Maurer, R. H. Falk, G. Merlini, T. Damy, A. Dispenzieri, A. D. Wechalekar, J. L. Berk, C. C. Quarta, M. Grogan, H. J. Lachmann, S. Bokhari, A. Castano, S. Dorbala, G. B. Johnson, A. W. J. M. Glaudemans, T. Rezk, M. Fontana, G. Palladini, P. Milani, P. L. Guidalotti, K. Flatman, T. Lane, F. W. Vonberg, C. J. Whelan, J. C. Moon, F. L. Ruberg, E. J. Miller, D. F. Hutt, B. P. Hazenberg, C. Rapezzi, P. N. Hawkins, “Nonbiopsy diagnosis of cardiac transthyretin amyloidosis,” Circulation, AHA, 133:24:2404–2412 (2016).

Article  CAS  Google Scholar 

S. Imambi, K. B. Prakash, G. Kanagachidambaresan, “Pytorch,” Programming with TensorFlow: Solution for Edge Computing Applications, Springer, 87–104 (2021).

P. Esposito, “Blitz - bayesian layers in torch zoo (a bayesian deep learing library for torch), github.” https://github.com/piEsposito/blitz-bayesian-deep-learning/ (2020).

T. DeVries, W. T. Graham, “Learning confidence for out-of-distribution detection in neural networks,” arXiv preprint, https://doi.org/10.48550/arXiv.1802.04865 (February 13, 2018).

A. Uchendu, D. Campoy, C. Menart, A. Hildenbrandt, “Robustness of bayesian neural networks to white-box adversarial attacks,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 72–80 (2021).

Comments (0)

No login
gif