Abdul-Kareem IA, Stancak A, Parkes LM, Al-Ameen M, AlGhamdi J, Aldhafeeri FM, Sluming V (2011) Plasticity of the superior and middle cerebellar peduncles in musicians revealed by quantitative analysis of volume and number of streamlines based on diffusion tensor tractography. Cerebellum 10(3):611–623. https://doi.org/10.1007/s12311-011-0274-1
Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA (2019) Raincloud plots: A multi-platform tool for robust data visualization [version 1; peer review: 2 approved]. Wellcome Open Res 4:1–40. https://doi.org/10.12688/wellcomeopenres.15191.1
Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E (2017) Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum Brain Mapp 38(6):2955–2970. https://doi.org/10.1002/hbm.23565
Article PubMed PubMed Central Google Scholar
Angenstein N, Scheich H, Brechmann A (2012) Interaction between bottom-up and top-down effects during the processing of pitch intervals in sequences of spoken and sung syllables. Neuroimage 61(3):715–722. https://doi.org/10.1016/j.neuroimage.2012.03.086
Angulo-Perkins A, Aubé W, Peretz I, Barrios FA, Armony JL, Concha L (2014) Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex 59:126–137. https://doi.org/10.1016/j.cortex.2014.07.013
Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M (2012) Individual variability in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci USA 109(9):3516–3521. https://doi.org/10.1073/pnas.1113148109
Article PubMed PubMed Central Google Scholar
Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, Altenmüller E (2006) Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30(3):917–926. https://doi.org/10.1016/j.neuroimage.2005.10.044
Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108(18):7641–7646. https://doi.org/10.1073/pnas.1018985108
Article PubMed PubMed Central Google Scholar
Bassett DS, Yang M, Wymbs NF, Grafton ST (2015) Learning-induced autonomy of sensorimotor systems. Nat Neurosci 18(5):744–751. https://doi.org/10.1038/nn.3993
Article CAS PubMed PubMed Central Google Scholar
Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042
Bermudez P, Zatorre RJ (2005) Differences in gray matter between musicians and nonmusicians. Ann N Y Acad Sci. https://doi.org/10.1196/annals.1360.057
Bianchi F, Hjortkjær J, Santurette S, Zatorre RJ, Siebner HR, Dau T (2017) Subcortical and cortical correlates of pitch discrimination: evidence for two levels of neuroplasticity in musicians. Neuroimage 163(May):398–412. https://doi.org/10.1016/j.neuroimage.2017.07.057
Bidelman GM, Grall J (2014) Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex. Neuroimage 101:204–214. https://doi.org/10.1016/j.neuroimage.2014.07.005
Brechmann A, Angenstein N (2019) The impact of task difficulty on the lateralization of processing in the human auditory cortex. Hum Brain Mapp 40(18):5341–5353. https://doi.org/10.1002/hbm.24776
Article PubMed PubMed Central Google Scholar
Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of Temporally Coherent Brain Networks Estimated Using ICA at Rest and during Cognitive Tasks 838:828–838. https://doi.org/10.1002/hbm.20581
Chevillet M, Riesenhuber M, Rauschecker JP (2011) Functional correlates of the anterolateral processing hierarchy in human auditory cortex. J Neurosci 31(25):9345–9352. https://doi.org/10.1523/JNEUROSCI.1448-11.2011
Article CAS PubMed PubMed Central Google Scholar
Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Article intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. https://doi.org/10.1016/j.neuron.2014.05.014
Article CAS PubMed PubMed Central Google Scholar
Cole MW, Ito T, Bassett DS, Schultz DH (2016) Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci 19(12):1718–1726. https://doi.org/10.1038/nn.4406
Article CAS PubMed PubMed Central Google Scholar
Collins JA, Dickerson BC (2019) Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 29(5):440–450. https://doi.org/10.1002/hipo.23003
Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci 103(37):13848–13853. https://doi.org/10.1073/pnas.0601417103
Article CAS PubMed PubMed Central Google Scholar
de Manzano Ö, Ullén F (2018) Same Genes, different brains: Neuroanatomical differences between monozygotic twins discordant for musical training. Cereb Cortex 28(1):387–394. https://doi.org/10.1093/cercor/bhx299
De Pisapia N, Bacci F, Parrott D, Melcher D (2016) Brain networks for visual creativity: a functional connectivity study of planning a visual artwork. Sci Rep 6:1–11. https://doi.org/10.1038/srep39185
Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front Human Neurosci 7(SEP):1–9. https://doi.org/10.3389/fnhum.2013.00493
Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Gorgolewski KJ (2019) fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 16(1):111–116. https://doi.org/10.1038/s41592-018-0235-4
Article CAS PubMed Google Scholar
Fauvel B, Groussard M, Chételat G, Fouquet M, Landeau B, Eustache F, Platel H (2014) Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. Neuroimage 90:179–188. https://doi.org/10.1016/j.neuroimage.2013.12.065
Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci. https://doi.org/10.1523/jneurosci.23-27-09240.2003
Article PubMed PubMed Central Google Scholar
Geiser E, Notter M, Gabrieli JDE (2012) A corticostriatal neural system enhances auditory perception through temporal context processing. J Neurosci 32(18):6177–6182. https://doi.org/10.1523/JNEUROSCI.5153-11.2012
Article CAS PubMed PubMed Central Google Scholar
Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Poldrack RA (2016) The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3(1):160044. https://doi.org/10.1038/sdata.2016.44
Article PubMed PubMed Central Google Scholar
Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10(1–2):107–120. https://doi.org/10.1155/NP.2003.107
Article PubMed PubMed Central Google Scholar
Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26(51):13338–13343. https://doi.org/10.1523/JNEUROSCI.3408-06.2006
Article CAS PubMed PubMed Central Google Scholar
Hou J, Chen C (2021) Dynamic resting-state functional connectivity and pitch identification ability in nonmusicians. Psychomusicol Music Mind Brain. https://doi.org/10.1037/pmu0000277
Hou J, Chen C, Dong Q (2015) Resting-state functional connectivity and pitch identification ability in non-musicians. Front Neurosci 9(FEB):1–10. https://doi.org/10.3389/fnins.2015.00007
Hyde KL, Peretz I, Zatorre RJ (2008) Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46(2):632–639. https://doi.org/10.1016/j.neuropsychologia.2007.09.004
James CE, Oechslin MS, Van De Ville D, Hauert CA, Descloux C, Lazeyras F (2014) Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct 219(1):353–366. https://doi.org/10.1007/s00429-013-0504-z
James CE, Oechslin MS, Michel CM, Pretto MD (2017) Electrical neuroimaging of music processing reveals mid-latency changes with level of musical expertise. Front Neurosci. https://doi.org/10.3389/fnins.2017.00613
Comments (0)