Advances in heterogeneous single-cluster catalysis

Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

Article  CAS  Google Scholar 

Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021). This paper examines how nanoscale engineering can enhance the selectivity and stability of heterogeneous catalysts.

Article  CAS  PubMed  Google Scholar 

Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

Article  Google Scholar 

Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

Article  Google Scholar 

Zhang, J., Yang, H. B., Zhou, D. & Liu, B. Adsorption energy in oxygen electrocatalysis. Chem. Rev. 122, 17028–17072 (2022).

Article  CAS  PubMed  Google Scholar 

Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

Article  PubMed  Google Scholar 

Zhao, X., Levell, Z. H., Yu, S. & Liu, Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 122, 10675–10709 (2022).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, Y., Wang, M., Zhu, Q., Xiao, D. & Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5, 766–776 (2022).

Article  CAS  Google Scholar 

Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2021).

Article  Google Scholar 

Yang, H. et al. Catalytically active atomically thin cuprate with periodic Cu single sites. Natl Sci. Rev. 10, nwac100 (2023).

Article  PubMed  Google Scholar 

Heiz, U. & Schneider, W.-D. Size-selected clusters on solid surfaces. Crit. Rev. Solid State Mater. Sci. 26, 251–290 (2001).

Article  CAS  Google Scholar 

Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

Article  CAS  PubMed  Google Scholar 

Vajda, S. & White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).

Article  CAS  Google Scholar 

Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

Article  CAS  PubMed  Google Scholar 

Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

Article  CAS  PubMed  Google Scholar 

Mitchell, S. & Pérez-Ramírez, J. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat. Rev. Mater. 6, 969–985 (2021).

Article  Google Scholar 

Sun, L., Reddu, V. & Wang, X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem. Soc. Rev. 51, 8923–8956 (2022).

Article  CAS  PubMed  Google Scholar 

Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). This paper summarizes work on size-selected supported clusters to provide a mechanistic understanding of their catalytic properties.

Article  CAS  PubMed  Google Scholar 

Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018). This paper is one of the earliest papers using the term of SCCs.

Article  PubMed  PubMed Central  Google Scholar 

Ma, X.-L., Liu, J.-C., Xiao, H. & Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 140, 46–49 (2018). This paper first introduces the term SCC.

Article  CAS  PubMed  Google Scholar 

Xing, D.-H., Xu, C.-Q., Wang, Y.-G. & Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C 123, 10494–10500 (2019).

Article  CAS  Google Scholar 

Yao, C. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 11, 4389 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rong, H., Ji, S., Zhang, J., Wang, D. & Li, Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020). This review presents the progress of the synthesis of supported atomic clusters and highlights how the structure affects catalytic properties.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, A. et al. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. Engl. 135, e202303185 (2023).

Article  Google Scholar 

Tian, S. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, N. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. Engl. 60, 13388–13393 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 33, 2003327 (2021). This paper is a representative paper about dual-atom catalysts, which can be seen as the simplest form of SCCs.

Article  CAS  Google Scholar 

Gu, J. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021). This paper reports the enhanced stability of SCCs compared with SACs.

Article  CAS  PubMed  Google Scholar 

Yang, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ye, W. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865–2878 (2019).

Article  CAS  Google Scholar 

Ren, W. et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. Engl. 58, 6972–6976 (2019).

Article  CAS  PubMed  Google Scholar 

Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

Article  CAS  PubMed  Google Scholar 

Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

Article  CAS  PubMed  Google Scholar 

Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 688 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wei, Y. S. et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. Engl. 59, 16013–16022 (2020).

Article  CAS  PubMed  Google Scholar 

Zhou, Y. et al. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 11, 1404–1410 (2020).

Article  CAS  PubMed  Google Scholar 

Dai, S. et al. Platinum-trimer decorated cobalt–palladium core–shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 10, 440 (2019).

Comments (0)

No login
gif