Catechol redox maintenance in mussel adhesion

Wold, F. In vivo chemical modification of proteins (post-translational modification). Annu. Rev. Biochem. 50, 738–814 (1981).

Article  Google Scholar 

Waite, J. H. & Tanzer, M. L. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212, 1038–1040 (1981).

Article  CAS  PubMed  Google Scholar 

Westerman, C. R., McGill, B. C. & Wilker, J. J. Sustainably sourced components to generate high-strength adhesives. Nature 621, 306–311 (2023).

Article  CAS  PubMed  Google Scholar 

Shin, M. Complete prevention of blood loss with self-sealing haemostatic needles. Nat. Mater. 16, 147–156 (2017).

Article  CAS  PubMed  Google Scholar 

Kim, E. et al. Graphene oxide/mussel foot protein composites for high strength and ultra-tough thin films. Sci. Rep. 10, 19082 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Z. et al. Enhanced repairing of critical-sized calvarial bone defects by mussel-inspired calcium phosphate cement. ACS Biomater. Sci. Eng. 4, 1852–1861 (2018).

CAS  PubMed  Google Scholar 

Suárez-García, S., Nicotera, I., Ruiz-Molina, D. & Simari, C. A mussel-inspired coating for cost-effective and environmentally friendly CO2 capture. Chem. Eng. J. 473, 145280 (2023).

Article  Google Scholar 

Holten-Andersen, N. et al. pH induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011). The first report of a synthetic hydrogel cohesively held together by bis-catecholato-iron and tris-catecholato-iron complexes.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filippidi, E. et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358, 502–505 (2017). Demonstration that catecholato-iron complexes can form in anhydrous polymers.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maier, G. P., Bernt, C. M. & Butler, A. Catechol oxidation: considerations in the design of wet adhesive materials. Biomater. Sci. 6, 332–339 (2018).

Article  CAS  PubMed  Google Scholar 

Menyo, M. S., Hawker, C. J. & Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9, 10314–10323 (2013).

Article  CAS  Google Scholar 

Krogsgaard, M., Nue, V. & Birkedal, H. Mussel-inspired materials: self-healing through coordination chemistry. Chem. Eur. J. 22, 844–857 (2016).

Article  CAS  PubMed  Google Scholar 

Krogsgaard, M., Hansen, M. R. & Birkedal, H. Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J. Mater. Chem. B 2, 8292–8297 (2016).

Article  Google Scholar 

Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl Acad. Sci. USA 103, 12999–13003 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waite, J. H. Mussel adhesion — essential footwork. J. Exp. Biol. 220, 517–530 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Moeser, G. M. & Carrington, E. Seasonal variation in mussel byssal thread mechanics. J. Exp. Biol. 209, 1996–2003 (2006).

Article  PubMed  Google Scholar 

Rising, A. & Harrington, M. J. Biological materials processing: time-tested tricks for sustainable fiber fabrication. Chem. Rev. 123, 2155–2199 (2023).

Article  CAS  PubMed  Google Scholar 

Priemel, T. et al. Microfluidic-like fabrication of metal ion–cured bio-adhesives by mussels. Science 374, 206–211 (2021). This report examines how mussels traffic metals and Dopa prior to their interaction in byssus.

Article  CAS  PubMed  Google Scholar 

Roberts, E. A. et al. Resource allocation to a structural biomaterial: induced production of byssal threads decreases growth of a marine mussel. Funct. Ecol. 35, 1222–1239 (2021).

Article  CAS  Google Scholar 

Suchanek, T. H. The role of disturbance in the evolution of life history strategies in the intertidal mussels Mytilus edulis and Mytilus californianus. Oecologia 50, 143–152 (1981).

Article  PubMed  Google Scholar 

Merkel, J. R., Dreisbach, J. H. & Ziegler, H. B. Collagenolytic activity of some marine bacteria. Appl. Microbiol. 29, 145–151 (1975).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Structure of Vibrio collagenase VhaC provides insight into mechanism of bacterial collagenolysis. Nat. Commun. 13, 566 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunha Neves, A., Harnedy-Rothwell, P. & FitzGerald, R. J. In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. Eur. Food Res. Technol. 248, 1721–1732 (2022).

Article  CAS  Google Scholar 

Vogler, H. et al. The pollen tube: a soft shell with a hard core. Plant. J. 73, 617–627 (2013).

Article  CAS  PubMed  Google Scholar 

Beaugendre, A. et al. Self-stratifying coatings: a review. Prog. Org. Coat. 110, 210–241 (2017).

Article  CAS  Google Scholar 

Sivasundarampillai, J. et al. A strong quick-release biointerface in mussels mediated by serotonergic cilia-based adhesion. Science 382, 829–834 (2023). The interface between byssus and living tissue has important implications for the design of prostheses.

Article  CAS  PubMed  Google Scholar 

Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H. & Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328, 216–220 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitt, C. N. et al. Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J. R. Soc. Interface 12, 0466 (2015).

Article  PubMed  Google Scholar 

Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

Article  CAS  PubMed  Google Scholar 

Johnstone, T. C. & Nolan, E. M. Determination of the molecular structures of ferric enterobactin and ferric enantioenterobactin using racemic crystallography. J. Am. Chem. Soc. 139, 15245–15250 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, W. et al. Unraveling the structure and function of melanin through synthesis. J. Am. Chem. Soc. 143, 2622–2637 (2021).

Article  CAS  PubMed  Google Scholar 

Rubin, D. J., Miserez, A. & Waite, J. H. Diverse strategies of protein sclerotization in marine invertebrates: structure–property relationships in natural biomaterials. Adv. Insect Physiol. 38, 75–133 (2010).

Article  Google Scholar 

Saiz-Poseu, J., Mancebo-Aracil, J., Nador, F., Busqué, F. & Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58, 696–714 (2019). An extensive overview of the versatile chemistry of catechols.

Article  CAS  Google Scholar 

Andersen, A., Chen, Y. & Birkedal, H. Bioinspired metal–polyphenol materials: self-healing and beyond. Biomimetics 4, 30 (2019).

Comments (0)

No login
gif