Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).
Kolesnichenko, I. V. & Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017). This review presents the practical application studies of supramolecular chemistry from various aspects.
Article CAS PubMed Google Scholar
Liu, Z., Nalluri, S. K. M. & Stoddart, J. F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017).
Article CAS PubMed Google Scholar
Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).
Article CAS PubMed Google Scholar
Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).
Article CAS PubMed Google Scholar
Zhao, D. & Moore, J. S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. https://doi.org/10.1039/B207442G (2003).
Jana, A. et al. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 47, 5614–5645 (2018).
Article CAS PubMed Google Scholar
Guo, D.-S. & Liu, Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014).
Article CAS PubMed Google Scholar
Hua, Y. & Flood, A. H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 39, 1262–1271 (2010).
Article CAS PubMed Google Scholar
Evans, N. H. & Beer, P. D. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew. Chem. Int. Ed. Engl. 53, 11716–11754 (2014).
Article CAS PubMed Google Scholar
Lehn, J.-M. Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978).
Li, J., Yim, D., Jang, W.-D. & Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017).
Article CAS PubMed Google Scholar
Murray, J., Kim, K., Ogoshi, T., Yao, W. & Gibb, B. C. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). This is one of the most comprehensive review papers to describe macrocycle host–guest chemistry in the aqueous state.
Article CAS PubMed PubMed Central Google Scholar
He, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as ion pair receptors. Chem. Rev. 119, 9753–9835 (2019).
Article CAS PubMed Google Scholar
Liu, W., Samanta, S. K., Smith, B. D. & Isaacs, L. Synthetic mimics of biotin/(strept)avidin. Chem. Soc. Rev. 46, 2391–2403 (2017).
Article CAS PubMed PubMed Central Google Scholar
Yang, L.-P., Wang, X., Yao, H. & Jiang, W. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature. Acc. Chem. Res. 53, 198–208 (2019).
Ni, X.-L. et al. Self-assemblies based on the ‘outer-surface interactions’ of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014).
Article CAS PubMed Google Scholar
Zhu, H., Li, Q., Zhu, W. & Huang, F. Pillararenes as versatile building blocks for fluorescent materials. Acc. Mater. Res. 3, 658–668 (2022). This review reveals and summarizes the applications of pillararenes in studies of fluorescent materials.
Dsouza, R. N., Pischel, U. & Nau, W. M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011).
Article CAS PubMed Google Scholar
Della Sala, P. et al. Prismarenes: a new class of macrocyclic hosts obtained by templation in a thermodynamically controlled synthesis. J. Am. Chem. Soc. 142, 1752–1756 (2020).
Article PubMed PubMed Central Google Scholar
Li, Z., Song, N. & Yang, Y.-W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 1, 345–368 (2019).
Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).
Article CAS PubMed Google Scholar
Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).
Article CAS PubMed Google Scholar
Enright, G. D., Udachin, K. A., Moudrakovski, I. L. & Ripmeester, J. A. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125, 9896–9897 (2003).
Article CAS PubMed Google Scholar
Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 46, 2638–2648 (2017).
Article CAS PubMed Google Scholar
Wang, D.-X. & Wang, M.-X. Exploring anion−π interactions and their applications in supramolecular chemistry. Acc. Chem. Res. 53, 1364–1380 (2020). This is a comprehensive review on the topic of anion−π interactions to reveal their theoretical studies and applications.
Article CAS PubMed Google Scholar
Schalley, C. A. Analytical Methods in Supramolecular Chemistry Vol. 1 (John Wiley & Sons, 2012).
Rissanen, K., Barbour, L. J. & MacGillivray, L. R. Structural macrocyclic supramolecular chemistry. CrystEngComm 16, 3644–3645 (2014).
Venkataraman, D., Lee, S., Zhang, J. & Moore, J. S. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371, 591–593 (1994).
White, N. G., Caballero, A. & Beer, P. D. Observation of strong halogen bonds in the solid state structures of bis-haloimidazolium macrocycles. CrystEngComm 16, 3722–3729 (2014).
Zhou, Y., Jie, K., Zhao, R. & Huang, F. Supramolecular‐macrocycle‐based crystalline organic materials. Adv. Mater. 32, 1904824 (2020).
Wu, J. R. & Yang, Y.-W. Synthetic macrocycle‐based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. Engl. 60, 1690–1701 (2021).
Article CAS PubMed Google Scholar
Ji, X. et al. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem. Soc. Rev. 48, 2682–2697 (2019).
Article CAS PubMed Google Scholar
Xia, D. et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 120, 6070–6123 (2020).
Article CAS PubMed Google Scholar
Zhao, Q. & Liu, Y. Tunable photo-luminescence behaviors of macrocycle-containing polymer networks in the solid-state. Chem. Commun. 54, 6068–6071 (2018).
Li, X., Li, Z. & Yang, Y.-W. Tetraphenylethylene‐interweaving conjugated macrocycle polymer materials as two‐photon fluorescence sensors for metal ions and organic molecules. Adv. Mater. 30, 1800177 (2018).
Chen, W. et al. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem. Soc. Rev. 50, 11684–11714 (2021).
Article CAS PubMed Google Scholar
Mali, K. S., Pearce, N., De Feyter, S. & Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 46, 2520–2542 (2017).
Article CAS PubMed Google Scholar
Lou, X. Y. & Yang, Y.-W. Pillar[n]arene‐based supramolecular switches in solution and on surfaces. Adv. Mater. 32, 2003263 (2020).
Shetty, A. S., Fischer, P. R., Stork, K. F., Bohn, P. W. & Moore, J. S. Assembly of amphiphilic phenylacetylene macrocycles at the air−water interface and on solid surfaces. J. Am. Chem. Soc. 118, 9409–9414 (1996).
Mohan, M. et al. Surface modification induced enhanced CO2 sorption in cucurbit[6]uril, an organic porous material. Phys. Chem. Chem. Phys. 19, 25564–25573 (2017).
Comments (0)