Applications of macrocycle-based solid-state host–guest chemistry

Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

Article  Google Scholar 

Kolesnichenko, I. V. & Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017). This review presents the practical application studies of supramolecular chemistry from various aspects.

Article  CAS  PubMed  Google Scholar 

Liu, Z., Nalluri, S. K. M. & Stoddart, J. F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017).

Article  CAS  PubMed  Google Scholar 

Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).

Article  CAS  PubMed  Google Scholar 

Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives:  new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

Article  CAS  PubMed  Google Scholar 

Zhao, D. & Moore, J. S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. https://doi.org/10.1039/B207442G (2003).

Jana, A. et al. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 47, 5614–5645 (2018).

Article  CAS  PubMed  Google Scholar 

Guo, D.-S. & Liu, Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014).

Article  CAS  PubMed  Google Scholar 

Hua, Y. & Flood, A. H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 39, 1262–1271 (2010).

Article  CAS  PubMed  Google Scholar 

Evans, N. H. & Beer, P. D. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew. Chem. Int. Ed. Engl. 53, 11716–11754 (2014).

Article  CAS  PubMed  Google Scholar 

Lehn, J.-M. Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978).

Article  CAS  Google Scholar 

Li, J., Yim, D., Jang, W.-D. & Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017).

Article  CAS  PubMed  Google Scholar 

Murray, J., Kim, K., Ogoshi, T., Yao, W. & Gibb, B. C. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). This is one of the most comprehensive review papers to describe macrocycle host–guest chemistry in the aqueous state.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as ion pair receptors. Chem. Rev. 119, 9753–9835 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, W., Samanta, S. K., Smith, B. D. & Isaacs, L. Synthetic mimics of biotin/(strept)avidin. Chem. Soc. Rev. 46, 2391–2403 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, L.-P., Wang, X., Yao, H. & Jiang, W. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature. Acc. Chem. Res. 53, 198–208 (2019).

Article  PubMed  Google Scholar 

Ni, X.-L. et al. Self-assemblies based on the ‘outer-surface interactions’ of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014).

Article  CAS  PubMed  Google Scholar 

Zhu, H., Li, Q., Zhu, W. & Huang, F. Pillararenes as versatile building blocks for fluorescent materials. Acc. Mater. Res. 3, 658–668 (2022). This review reveals and summarizes the applications of pillararenes in studies of fluorescent materials.

Article  CAS  Google Scholar 

Dsouza, R. N., Pischel, U. & Nau, W. M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011).

Article  CAS  PubMed  Google Scholar 

Della Sala, P. et al. Prismarenes: a new class of macrocyclic hosts obtained by templation in a thermodynamically controlled synthesis. J. Am. Chem. Soc. 142, 1752–1756 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Li, Z., Song, N. & Yang, Y.-W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 1, 345–368 (2019).

Article  Google Scholar 

Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).

Article  CAS  PubMed  Google Scholar 

Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

Article  CAS  PubMed  Google Scholar 

Enright, G. D., Udachin, K. A., Moudrakovski, I. L. & Ripmeester, J. A. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125, 9896–9897 (2003).

Article  CAS  PubMed  Google Scholar 

Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 46, 2638–2648 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, D.-X. & Wang, M.-X. Exploring anion−π interactions and their applications in supramolecular chemistry. Acc. Chem. Res. 53, 1364–1380 (2020). This is a comprehensive review on the topic of anion−π interactions to reveal their theoretical studies and applications.

Article  CAS  PubMed  Google Scholar 

Schalley, C. A. Analytical Methods in Supramolecular Chemistry Vol. 1 (John Wiley & Sons, 2012).

Rissanen, K., Barbour, L. J. & MacGillivray, L. R. Structural macrocyclic supramolecular chemistry. CrystEngComm 16, 3644–3645 (2014).

Article  CAS  Google Scholar 

Venkataraman, D., Lee, S., Zhang, J. & Moore, J. S. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371, 591–593 (1994).

Article  CAS  Google Scholar 

White, N. G., Caballero, A. & Beer, P. D. Observation of strong halogen bonds in the solid state structures of bis-haloimidazolium macrocycles. CrystEngComm 16, 3722–3729 (2014).

Article  CAS  Google Scholar 

Zhou, Y., Jie, K., Zhao, R. & Huang, F. Supramolecular‐macrocycle‐based crystalline organic materials. Adv. Mater. 32, 1904824 (2020).

Article  CAS  Google Scholar 

Wu, J. R. & Yang, Y.-W. Synthetic macrocycle‐based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. Engl. 60, 1690–1701 (2021).

Article  CAS  PubMed  Google Scholar 

Ji, X. et al. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem. Soc. Rev. 48, 2682–2697 (2019).

Article  CAS  PubMed  Google Scholar 

Xia, D. et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 120, 6070–6123 (2020).

Article  CAS  PubMed  Google Scholar 

Zhao, Q. & Liu, Y. Tunable photo-luminescence behaviors of macrocycle-containing polymer networks in the solid-state. Chem. Commun. 54, 6068–6071 (2018).

Article  CAS  Google Scholar 

Li, X., Li, Z. & Yang, Y.-W. Tetraphenylethylene‐interweaving conjugated macrocycle polymer materials as two‐photon fluorescence sensors for metal ions and organic molecules. Adv. Mater. 30, 1800177 (2018).

Article  Google Scholar 

Chen, W. et al. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem. Soc. Rev. 50, 11684–11714 (2021).

Article  CAS  PubMed  Google Scholar 

Mali, K. S., Pearce, N., De Feyter, S. & Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 46, 2520–2542 (2017).

Article  CAS  PubMed  Google Scholar 

Lou, X. Y. & Yang, Y.-W. Pillar[n]arene‐based supramolecular switches in solution and on surfaces. Adv. Mater. 32, 2003263 (2020).

Article  CAS  Google Scholar 

Shetty, A. S., Fischer, P. R., Stork, K. F., Bohn, P. W. & Moore, J. S. Assembly of amphiphilic phenylacetylene macrocycles at the air−water interface and on solid surfaces. J. Am. Chem. Soc. 118, 9409–9414 (1996).

Article  CAS  Google Scholar 

Mohan, M. et al. Surface modification induced enhanced CO2 sorption in cucurbit[6]uril, an organic porous material. Phys. Chem. Chem. Phys. 19, 25564–25573 (2017).

Article  CAS  PubMed 

Comments (0)

No login
gif