Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. https://doi.org/10.1182/blood-2017-03-769620.
Article CAS PubMed PubMed Central Google Scholar
Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. https://doi.org/10.1007/s00259-014-2961-x.
Article CAS PubMed Google Scholar
Eertink JJ, van de Brug T, Wiegers SE, Zwezerijnen GJC, Pfaehler EAG, Lugtenburg PJ, et al. (18)F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2022;49(3):932–42. https://doi.org/10.1007/s00259-021-05480-3.
Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas O, et al. (18)F-FDG PET dissemination features in diffuse large B-cell lymphoma are predictive of outcome. J Nucl Med. 2020;61(1):40–5. https://doi.org/10.2967/jnumed.119.229450.
Article CAS PubMed PubMed Central Google Scholar
Schmitz C, Huttmann A, Muller SP, Hanoun M, Boellaard R, Brinkmann M, et al. Dynamic risk assessment based on positron emission tomography scanning in diffuse large B-cell lymphoma: post-hoc analysis from the PETAL trial. Eur J Cancer. 2020;124:25–36. https://doi.org/10.1016/j.ejca.2019.09.027.
Article CAS PubMed Google Scholar
Jemaa S, Paulson JN, Hutchings M, Kostakoglu L, Trotman J, Tracy S, et al. Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments. Cancer Imaging. 2022;22(1):39. https://doi.org/10.1186/s40644-022-00476-0.
Article CAS PubMed PubMed Central Google Scholar
Weisman AJ, Kieler MW, Perlman SB, Hutchings M, Jeraj R, Kostakoglu L, et al. Convolutional neural networks for automated PET/CT detection of diseased lymph node burden in patients with lymphoma. Radiol Artif Intell. 2020;2(5):e200016. https://doi.org/10.1148/ryai.2020200016.
Article PubMed PubMed Central Google Scholar
Weisman AJ, Kim J, Lee I, McCarten KM, Kessel S, Schwartz CL, et al. Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients. EJNMMI Phys. 2020;7(1):76. https://doi.org/10.1186/s40658-020-00346-3.
Article PubMed PubMed Central Google Scholar
Blanc-Durand P, Jegou S, Kanoun S, Berriolo-Riedinger A, Bodet-Milin C, Kraeber-Bodere F, et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur J Nucl Med Mol Imaging. 2021;48(5):1362–70. https://doi.org/10.1007/s00259-020-05080-7.
Article CAS PubMed Google Scholar
Liu P, Zhang M, Gao X, Li B, Zheng G. Joint lymphoma lesion segmentation and prognosis prediction from baseline FDG-PET images via multitask convolutional neural networks. IEEE Access. 2022;10:81612–23. https://doi.org/10.1109/access.2022.3195906.
Ferrández MC, Golla SSV, Eertink JJ, de Vries BM, Lugtenburg PJ, Wiegers SE, et al. An artificial intelligence method using 18F-FDG PET maximum intensity projections to predict 2-year time-to-progression in diffuse large B-cell lymphoma patients. 2023. https://doi.org/10.21203/rs.3.rs-2761494/v1
Ferrandez MC, Eertink JJ, Golla SSV, Wiegers SE, Zwezerijnen GJC, Pieplenbosch S, et al. Combatting the effect of image reconstruction settings on lymphoma [(18)F]FDG PET metabolic tumor volume assessment using various segmentation methods. EJNMMI Res. 2022;12(1):44. https://doi.org/10.1186/s13550-022-00916-9.
Article CAS PubMed PubMed Central Google Scholar
Zwezerijnen GJC, Eertink JJ, Ferrandez MC, Wiegers SE, Burggraaff CN, Lugtenburg PJ, et al. Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging. 2023;50(2):486–93. https://doi.org/10.1007/s00259-022-05977-5.
Article CAS PubMed Google Scholar
Orlhac F, Eertink JJ, Cottereau AS, Zijlstra JM, Thieblemont C, Meignan M, et al. A guide to comBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63(2):172–9. https://doi.org/10.2967/jnumed.121.262464.
Article PubMed PubMed Central Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.
Kaalep A, Burggraaff CN, Pieplenbosch S, Verwer EE, Sera T, Zijlstra J, et al. Quantitative implications of the updated EARL 2019 PET-CT performance standards. EJNMMI Phys. 2019;6(1):28. https://doi.org/10.1186/s40658-019-0257-8.
Article PubMed PubMed Central Google Scholar
Lugtenburg PJ, de Nully BP, van der Holt B, D’Amore FA, Koene HR, de Jongh E, et al. Rituximab-CHOP with early rituximab intensification for diffuse large B-cell lymphoma: a randomized phase III trial of the HOVON and the Nordic Lymphoma Group (HOVON-84). J Clin Oncol. 2020;38(29):3377–87. https://doi.org/10.1200/JCO.19.03418.
Article CAS PubMed Google Scholar
Schwyzer M, Martini K, Benz DC, Burger IA, Ferraro DA, Kudura K, et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Eur Radiol. 2020;30(4):2031–40. https://doi.org/10.1007/s00330-019-06498-w.
Sheikhbahaei S, Marcus C, Wray R, Rahmim A, Lodge MA, Subramaniam RM. Impact of point spread function reconstruction on quantitative 18F-FDG-PET/CT imaging parameters and inter-reader reproducibility in solid tumors. Nucl Med Commun. 2016;37(3):288–96.
Article CAS PubMed Google Scholar
Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40(6):064301. https://doi.org/10.1118/1.4800806.
Article PubMed PubMed Central Google Scholar
Boellaard R. Quantitative oncology molecular analysis suite: ACCURATE. J Nucl Med. 2018;59:1753.
Jha AK, Bradshaw TJ, Buvat I, Hatt M, Kc P, Liu C, et al. Nuclear medicine and artificial intelligence: best practices for evaluation (the RELAINCE guidelines). J Nucl Med. 2022. https://doi.org/10.2967/jnumed.121.263239.
Article PubMed PubMed Central Google Scholar
Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70. https://doi.org/10.1016/j.neuroimage.2017.08.047.
Girum KB, Rebaud L, Cottereau AS, Meignan M, Clerc J, Vercellino L, et al. (18)F-FDG PET maximum intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.121.263501.
Article PubMed PubMed Central Google Scholar
Barrington SF, Meignan M. Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden. J Nucl Med. 2019;60(8):1096–102. https://doi.org/10.2967/jnumed.119.227249.
Article PubMed PubMed Central Google Scholar
Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucle Med. 2004;24:1519–27.
Mikhaeel NG, Smith D, Dunn JT, Phillips M, Moller H, Fields PA, et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43(7):1209–19. https://doi.org/10.1007/s00259-016-3315-7.
Article CAS PubMed PubMed Central Google Scholar
Ilyas H, Mikhaeel NG, Dunn JT, Rahman F, Moller H, Smith D, et al. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(7):1142–54. https://doi.org/10.1007/s00259-018-3953-z.
Article PubMed PubMed Central Google Scholar
Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A Postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59(8):1321–8. https://doi.org/10.2967/jnumed.117.199935.
Article CAS PubMed Google Scholar
Pfaehler E, Euba D, Rinscheid A, Hoekstra OS, Zijlstra J, van Sluis J, et al. Convolutional neural networks for automatic image quality control and EARL compliance of PET images. EJNMMI Phys. 2022;9(1):53. https://doi.org/10.1186/s40658-022-00468-w.
Article PubMed PubMed Central Google Scholar
Shortliffe EH, Sepulveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200. https://doi.org/10.1001/jama.2018.17163.
Comments (0)