Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic p2z receptor for extracellular atp identified as a p2x receptor (p2x7). Science 272:735. https://doi.org/10.1126/science.272.5262.735
Article CAS PubMed Google Scholar
Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR and Di Virgilio F (1997) Extracellular atp triggers il-1 beta release by activating the purinergic p2z receptor of human macrophages. J Immunol 159:1451. https://www.ncbi.nlm.nih.gov/pubmed/9233643
Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A (2019) P2x7 interactions and signaling - making head or tail of it. Front Mol Neurosci 12:183. https://doi.org/10.3389/fnmol.2019.00183
Article CAS PubMed PubMed Central Google Scholar
Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of p2x7 receptor increases in vivo tumor growth. Cancer Res 72:2957. https://doi.org/10.1158/0008-5472.CAN-11-1947
Article CAS PubMed Google Scholar
Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, Macvicar BA (2001) P2x7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135. https://doi.org/10.1523/JNEUROSCI.21-18-07135.2001
Article CAS PubMed PubMed Central Google Scholar
Fumagalli M, Brambilla R, D’ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of p2x and p2y receptors. Glia 43:218. https://doi.org/10.1002/glia.10248
Matute C (2008) P2x7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol Neurobiol 38:123. https://doi.org/10.1007/s12035-008-8028-x
Article CAS PubMed Google Scholar
Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal p2x7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143. https://doi.org/10.1523/JNEUROSCI.21-18-07143.2001
Article CAS PubMed PubMed Central Google Scholar
Hervas C, Perez-Sen R, Miras-Portugal MT (2005) Presence of diverse functional p2x receptors in rat cerebellar synaptic terminals. Biochem Pharmacol 70:770. https://doi.org/10.1016/j.bcp.2005.05.033
Article CAS PubMed Google Scholar
Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT, Lucas JJ (2009) Altered p2x7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 23:1893. https://doi.org/10.1096/fj.08-122275
Article CAS PubMed Google Scholar
Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT, Diaz-Hernandez M (2012) In vivo p2x7 inhibition reduces amyloid plaques in Alzheimer’s disease through gsk3beta and secretases. Neurobiol Aging 33:1816. https://doi.org/10.1016/j.neurobiolaging.2011.09.040
Article CAS PubMed Google Scholar
Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M, Domercq M (2007) P2x(7) receptor blockade prevents atp excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525. https://doi.org/10.1523/JNEUROSCI.0579-07.2007
Article CAS PubMed PubMed Central Google Scholar
Bartlett R, Stokes L, Sluyter R (2014) The p2x7 receptor channel: recent developments and the use of p2x7 antagonists in models of disease. Pharmacol Rev 66:638. https://doi.org/10.1124/pr.113.008003
Article CAS PubMed Google Scholar
Beamer E, Fischer W, Engel T (2017) The atp-gated p2x7 receptor as a target for the treatment of drug-resistant epilepsy. Front Neurosci 11:21. https://doi.org/10.3389/fnins.2017.00021
Article PubMed PubMed Central Google Scholar
Diaz-Hernandez M, Del Puerto A, Diaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ, Miras-Portugal MT (2008) Inhibition of the atp-gated p2x7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci 121:3717. https://doi.org/10.1242/jcs.034082
Article CAS PubMed Google Scholar
Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014. https://doi.org/10.1091/mbc.E10-09-0740
Article CAS PubMed PubMed Central Google Scholar
Ortega F, Gomez-Villafuertes R, Benito-Leon M, Martinez De La Torre M, Olivos-Ore LA, Arribas-Blazquez M, Gomez-Gaviro MV, Azcorra A, Desco M, Artalejo AR, Puelles L, Miras-Portugal MT (2021) Salient brain entities labelled in p2rx7-egfp reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Struct Funct 226:715. https://doi.org/10.1007/s00429-020-02204-5
Article CAS PubMed PubMed Central Google Scholar
Carrasquero LM, Delicado EG, Bustillo D, Gutierrez-Martin Y, Artalejo AR, Miras-Portugal MT (2009) P2x7 and p2y13 purinergic receptors mediate intracellular calcium responses to bzatp in rat cerebellar astrocytes. J Neurochem 110:879. https://doi.org/10.1111/j.1471-4159.2009.06179.x
Article CAS PubMed Google Scholar
Leon D, Sanchez-Nogueiro J, Marin-Garcia P, Miras-Portugal MA (2008) Glutamate release and synapsin-i phosphorylation induced by p2x7 receptors activation in cerebellar granule neurons. Neurochem Int 52:1148. https://doi.org/10.1016/j.neuint.2007.12.004
Article CAS PubMed Google Scholar
Carrasquero LM, Delicado EG, Sanchez-Ruiloba L, Iglesias T, Miras-Portugal MT (2010) Mechanisms of protein kinase d activation in response to p2y(2) and p2x7 receptors in primary astrocytes. Glia 58:984. https://doi.org/10.1002/glia.20980
Ortega F, Perez-Sen R, Morente V, Delicado EG, Miras-Portugal MT (2010) P2x7, nmda and bdnf receptors converge on gsk3 phosphorylation and cooperate to promote survival in cerebellar granule neurons. Cell Mol Life Sci 67:1723. https://doi.org/10.1007/s00018-010-0278-x
Article CAS PubMed PubMed Central Google Scholar
Ortega F, Perez-Sen R, Delicado EG, Teresa Miras-Portugal M (2011) Erk1/2 activation is involved in the neuroprotective action of p2y13 and p2x7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 61:1210. https://doi.org/10.1016/j.neuropharm.2011.07.010
Article CAS PubMed Google Scholar
Queipo MJ, Gil-Redondo JC, Morente V, Ortega F, Miras-Portugal MT, Delicado EG, Perez-Sen R (2017) P2x7 nucleotide and EGF receptors exert dual modulation of the dual-specificity phosphatase 6 (mkp-3) in granule neurons and astrocytes, contributing to negative feedback on Erk signaling. Front Mol Neurosci 10:448. https://doi.org/10.3389/fnmol.2017.00448
Article CAS PubMed Google Scholar
Patterson KI, Brummer T, O’brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475. https://doi.org/10.1042/bj20082234
Article CAS PubMed Google Scholar
Seternes OM, Kidger AM, Keyse SM (2019) Dual-specificity map kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res 1866:124. https://doi.org/10.1016/j.bbamcr.2018.09.002
Article CAS PubMed PubMed Central Google Scholar
Jurek A, Amagasaki K, Gembarska A, Heldin CH, Lennartsson J (2009) Negative and positive regulation of mapk phosphatase 3 controls platelet-derived growth factor-induced erk activation. J Biol Chem 284:4626. https://doi.org/10.1074/jbc.M808490200
Article CAS PubMed Google Scholar
Zeliadt NA, Mauro LJ, Wattenberg EV (2008) Reciprocal regulation of extracellular signal regulated kinase 1/2 and mitogen activated protein kinase phosphatase-3. Toxicol Appl Pharmacol 232:408. https://doi.org/10.1016/j.taap.2008.08.007
Article CAS PubMed PubMed Central Google Scholar
Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouyssegur J, Pages G (2005) Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/dusp6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol 25:854. https://doi.org/10.1128/MCB.25.2.854-864.2005
Article CAS PubMed PubMed Central Google Scholar
Molina G, Vogt A, Bakan A, Dai W, Queiroz De Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M (2009) Zebrafish chemical screening reveals an inhibitor of dusp6 that expands cardiac cell lineages. Nat Chem Biol 5:680. https://doi.org/10.1038/nchembio.190
Article CAS PubMed PubMed Central Google Scholar
Comalada M, Lloberas J, Celada A (2012) Mkp-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 42:1938. https://doi.org/10.1002/eji.201242441
Article CAS PubMed Google Scholar
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O’neil JD, Clark AR (2017) Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin e(2), dual specificity phosphatase 1 and tristetraprolin. Sci Rep 7:4350. https://doi.org/10.1038/s41598-017-04100-1
Comments (0)