Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl. 51, 8960–9009 (2012).
Article CAS PubMed Google Scholar
Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).
Article CAS PubMed Google Scholar
Rogge, T. et al. C–H activation. Nat. Rev. Methods Primers 1, 1–31 (2021).
Davies, H. M. L., Bois, J. D. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).
Article CAS PubMed Google Scholar
Bellina, F. & Rossi, R. Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C−H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem. Rev. 110, 1082–1146 (2010).
Article CAS PubMed Google Scholar
Che, C.-M., Lo, V. K.-Y., Zhou, C.-Y. & Huang, J.-S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).
Article CAS PubMed Google Scholar
Zhou, M. & Crabtree, R. H. C–H oxidation by platinum group metal oxo or peroxo species. Chem. Soc. Rev. 40, 1875–1884 (2011).
Article CAS PubMed Google Scholar
Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).
Article CAS PubMed Google Scholar
Guo, X.-X., Gu, D.-W., Wu, Z. & Zhang, W. Copper-catalyzed C–H functionalization reactions: efficient synthesis of heterocycles. Chem. Rev. 115, 1622–1651 (2015).
Article CAS PubMed Google Scholar
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).
Article CAS PubMed Google Scholar
Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).
Article CAS PubMed PubMed Central Google Scholar
Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).
Article CAS PubMed Google Scholar
Zhang, Q. & Shi, B.-F. Site-selective functionalization of remote aliphatic C–H bonds via C–H metallation. Chem. Sci. 12, 841–852 (2021).
Christmann, M. Selective oxidation of aliphatic C–H bonds in the synthesis of complex molecules. Angew. Chem. Int. Ed. Engl. 47, 2740–2742 (2008).
Article CAS PubMed Google Scholar
Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).
Article CAS PubMed Google Scholar
McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).
Article CAS PubMed Google Scholar
Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. Engl. 50, 3362–3374 (2011).
Article CAS PubMed PubMed Central Google Scholar
Chen, D. Y.-K. & Youn, S. W. C–H activation: a complementary tool in the total synthesis of complex natural products. Chem. Eur. J. 18, 9452–9474 (2012).
Article CAS PubMed Google Scholar
Qiu, Y. & Gao, S. Trends in applying C–H oxidation to the total synthesis of natural products. Nat. Prod. Rep. 33, 562–581 (2016).
Article CAS PubMed Google Scholar
Karimov, R. R. & Hartwig, J. F. Transition-metal-catalyzed selective functionalization of C(sp3)−H bonds in natural products. Angew. Chem. Int. Ed. Engl. 57, 4234–4241 (2018).
Article CAS PubMed PubMed Central Google Scholar
Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).
Article CAS PubMed Google Scholar
Santana, V. C. S., Fernandes, M. C. V., Cappuccelli, I., Richieri, A. C. G. & de Lucca Jr, E. C. Metal-catalyzed C–H bond oxidation in the total synthesis of natural and unnatural products. Synthesis 54, 5337–5359 (2022).
Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).
Article CAS PubMed Google Scholar
King, S. M. & Herzon, S. B. Substrate-modified functional group reactivity: hasubanan and acutumine alkaloid syntheses. J. Org. Chem. 79, 8937–8947 (2014).
Article CAS PubMed Google Scholar
Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ishihara, Y. & Baran, P. S. Two-phase terpene total synthesis: historical perspective and application to the Taxol® problem. Synlett 2010, 1733–1745 (2010).
Kanda, Y. et al. Two-phase synthesis of Taxol. J. Am. Chem. Soc. 142, 10526–10533 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kanda, Y., Ishihara, Y., Wilde, N. C. & Baran, P. S. Two-phase total synthesis of taxanes: tactics and strategies. J. Org. Chem. 85, 10293–10320 (2020).
Article CAS PubMed Google Scholar
Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009). A landmark synthesis using C–H oxidations in a two-phase approach.
Article CAS PubMed Google Scholar
Hung, K. et al. Development of a terpene feedstock-based oxidative synthetic approach to the Illicium sesquiterpenes. J. Am. Chem. Soc. 141, 3083–3099 (2019). A synthesis featuring several enabling C–H oxidations expanding the possibilities of chiral pool strategies.
Article CAS PubMed PubMed Central Google Scholar
West, S. P., Bisai, A., Lim, A. D., Narayan, R. R. & Sarpong, R. Total synthesis of (+)-lyconadin A and related compounds via oxidative C−N bond formation. J. Am. Chem. Soc. 131, 11187–11194 (2009).
Article CAS PubMed Google Scholar
Fischer, D. F. & Sarpong, R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C−H functionalization. J. Am. Chem. Soc. 132, 5926–5927 (2010).
Article CAS PubMed PubMed Central Google Scholar
Newton, J. N., Fischer, D. F. & Sarpong, R. Synthetic studies on pseudo-dimeric lycopodium alkaloids: total synthesis of complanadine B. Angew. Chem. Int. Ed. Engl. 52, 1726–1730 (2013).
Article CAS PubMed Google Scholar
Leal, R. A. et al. Application of a palladium-catalyzed C−H functionalization/indolization method to syntheses of cis-trikentrin A and herbindole B. Angew. Chem. Int. Ed. Engl. 55, 11824–11828 (2016).
Article CAS PubMed Google Scholar
Haider, M., Sennari, G., Eggert, A. & Sarpong, R. Total synthesis of the Cephalotaxus norditerpenoids (±)-cephanolides A–D. J. Am. Chem. Soc. 143, 2710–2715 (2021).
Article CAS PubMed Google Scholar
Haley, H. M. S. et al. Bioinspired diversification approach toward the total synthesis of lycodine-type alkaloids. J. Am. Chem. Soc. 143, 4732–4740 (2021).
Article CAS PubMed PubMed Central Google Scholar
Jones, K. E., Park, B., Doering, N. A., Baik, M.-H. & Sarpong, R. Rearrangements of the chrysanthenol core: application to a formal synthesis of xishacorene B. J. Am. Chem. Soc. 143, 20482–20490 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lusi, R. F., Sennari, G. & Sarpong, R. Total synthesis of nine longiborneol sesquiterpenoids using a functionalized camphor strategy. Nat. Chem. 14, 450–456 (2022).
Comments (0)