Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).
Gao, R., Kodaimati, M. S. & Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 50, 5564–5589 (2021).
Article CAS PubMed Google Scholar
Ma, X., Wang, J. & Tian, H. Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc. Chem. Res. 52, 738–748 (2019).
Article CAS PubMed Google Scholar
Tang, S. et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 50, 12616–12655 (2021).
Article CAS PubMed Google Scholar
Li, Q. & Li, Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res. 53, 962–973 (2020).
Article CAS PubMed Google Scholar
Nie, H., Wei, Z., Ni, X.-L. & Liu, Y. Assembly and applications of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucurbiturils. Chem. Rev. 122, 9032–9077 (2022).
Article CAS PubMed Google Scholar
Tian, R., Xu, S.-M., Xu, Q. & Lu, C. Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv. 6, eaaz6107 (2020).
Article CAS PubMed PubMed Central Google Scholar
Liu, S., Lin, Y. & Yan, D. Hydrogen-bond organized 2D metal–organic microsheets: direct ultralong phosphorescence and color-tunable optical waveguides. Sci. Bull. 67, 2076–2084 (2022).
Zhou, B. & Yan, D. Long persistent luminescence from metal–organic compounds: state of the art. Adv. Funct. Mater. 33, 2300735 (2023).
Liu, S., Fang, X., Lu, B. & Yan, D. Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids. Nat. Commun. 11, 4649 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kumar, P., Singh, S. & Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale 8, 14297–14340 (2016).
Article CAS PubMed Google Scholar
Evans, R. C., Douglas, P. & Winscom, C. J. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord. Chem. Rev. 250, 2093–2126 (2006).
Feldmann, C., Jüstel, T., Ronda, C. R. & Schmidt, P. J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13, 511–516 (2003).
Yan, Y., Zhang, J., Ren, L. & Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev. 45, 5232–5263 (2016).
Article CAS PubMed PubMed Central Google Scholar
Green, D. C. et al. Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nat. Commun. 10, 206 (2019).
Article PubMed PubMed Central Google Scholar
Zheng, X. et al. Nearly unity quantum yield persistent room-temperature phosphorescence from heavy atom-free rigid inorganic/organic hybrid frameworks. Angew. Chem. Int. Ed. Engl. 61, e202207104 (2022).
Article CAS PubMed Google Scholar
Yao, X. et al. Room-temperature phosphorescence enabled through nacre-mimetic nanocomposite design. Adv. Mater. 33, 2005973 (2021).
Wu, Z. et al. Persistent room temperature phosphorescence from triarylboranes: a combined experimental and theoretical study. Angew. Chem. Int. Ed. Engl. 59, 17137–17144 (2020).
Article PubMed PubMed Central Google Scholar
Shao, W. & Kim, J. Metal-free organic phosphors toward fast and efficient room-temperature phosphorescence. Acc. Chem. Res. 55, 1573–1585 (2022).
Article CAS PubMed Google Scholar
Hamzehpoor, E. et al. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem. 15, 83–90 (2023).
Article CAS PubMed Google Scholar
Ren, Y. et al. Clusterization-triggered color-tunable room-temperature phosphorescence from 1,4-dihydropyridine-based polymers. J. Am. Chem. Soc. 144, 1361–1369 (2022).
Article CAS PubMed Google Scholar
Jia, X. et al. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl Acad. Sci. USA 116, 4816–4821 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wei, J. et al. Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew. Chem. Int. Ed. Engl. 55, 15589–15593 (2016).
Article CAS PubMed Google Scholar
Ma, H., Peng, Q., An, Z., Huang, W. & Shuai, Z. Efficient and long-lived room-temperature organic phosphorescence: theoretical descriptors for molecular designs. J. Am. Chem. Soc. 141, 1010–1015 (2018).
Hirata, S. Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Appl. Phys. Rev. 9, 011304 (2022).
Baryshnikov, G., Minaev, B. & Ågren, H. Theory and calculation of the phosphorescence phenomenon. Chem. Rev. 117, 6500–6537 (2017).
Article CAS PubMed Google Scholar
He, Z. et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017).
Article PubMed PubMed Central Google Scholar
Fateminia, S. A. et al. Organic nanocrystals with bright red persistent room‐temperature phosphorescence for biological applications. Angew. Chem. Int. Ed. Engl. 129, 12328–12332 (2017).
Chen, C. et al. Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 130, 16645–16649 (2018).
Ye, W. et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 20, 1539–1544 (2021).
Article CAS PubMed Google Scholar
Zhu, T., Yang, T., Zhang, Q. & Yuan, W. Z. Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides. Nat. Commun. 13, 2658 (2022).
Article CAS PubMed PubMed Central Google Scholar
Shoji, Y. et al. Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J. Am. Chem. Soc. 139, 2728–2733 (2017).
Article CAS PubMed Google Scholar
Baroncini, M., Bergamini, G. & Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 53, 2081–2093 (2017).
Bolton, O., Lee, K., Kim, H.-J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011).
Article CAS PubMed Google Scholar
Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 114, 6090–6099 (2010).
Zhang, Z. Y., Chen, Y. & Liu, Y. Efficient room‐temperature phosphorescence of a solid‐state supramolecule enhanced by cucurbit [6] uril. Angew. Chem. Int. Ed. Engl. 58, 6028–6032 (2019).
Article CAS PubMed Google Scholar
Kwon, M. S., Lee, D., Seo, S., Jung, J. & Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. Engl. 53, 11177–11181 (2014).
Article CAS PubMed Google Scholar
Jiang, K. et al. Triple‐mode emission of carbon dots: applications for advanced anti‐counterfeiting. Angew. Chem. Int. Ed. Engl. 55, 7231–7235 (2016).
Article CAS PubMed Google Scholar
Ma, X., Xu, C., Wang, J. & Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. Engl. 57, 10854–10858 (2018).
Comments (0)