Mechanistically transparent models for predicting aqueous solubility of rigid, slightly flexible, and very flexible drugs (MW<2000) Accuracy near that of random forest regression

A. Llinàs, R.C. Glen, J.M. Goodman. Solubility challenge: can you predict solubilities of 32 molecules using a database of 100 reliable measurements? Journal of Chemical Information and Modeling 48 (2008) 1289-1303. https://doi.org/10.1021/ci800058v.

A.J. Hopfinger, E.X. Esposito, A. Llinàs, R.C. Glen, J.M. Goodman. Findings of the challenge to predict aqueous solubility. Journal of Chemical Information and Modeling 49 (2009) 1-5. https://doi.org/10.1021/ci800436c.

A. Llinas, A. Avdeef. Solubility challenge revisited after ten years, with multi-lab shake-flask data, using tight (SD ∼ 0.17 log) and loose (SD ∼ 0.62 log) test sets. Journal of Chemical Information and Modeling 59 (2019) 3036-3040. https://doi.org/10.1021/acs.jcim.9b00345.

A. Llinas, I. Oprisiu, A. Avdeef. Findings of the second challenge to predict aqueous solubility. J. Chem. Inf. Model. 60 (2020) 4791-4803. https://doi.org/10.1021/acs.jcim.0c00701.

M. Oja, S. Sild, G. Piir, U. Maran. Intrinsic aqueous solubility: mechanistically transparent data-driven modeling of drug substances. Pharmaceutics 14 (2022) 2248. https://doi.org/10.3390/pharmaceutics14102248.

D.S. Palmer, J.B.O. Mitchell. Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules? Molecular Pharmaceutics 11 (2014) 2962-2972. https://doi.org/10.1021/mp500103r.

A. Avdeef. Predicting Solubility of New Drugs - Handbook of Critically Curated Data for Pharma-ceutical Research. CRC Press, Boca Raton, FL, USA, 2024 ISBN:‎ 978-1032617671. https://www.barnesandnoble.com/w/predicting-solubility-of-new-drugs-alex-avdeef/1143832638.

A. Avdeef. Suggested improvements for measurement of equilibrium solubility-pH of ionizable drugs. ADMET & DMPK 3 (2105) 84-109. https://doi.org/10.5599/admet.3.2.193.

A. Avdeef, E. Fuguet, A. Llinàs, C. Ràfols, E. Bosch, G. Völgyi, T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality. ADMET & DMPK 4 (2016) 117-178. https://doi.org/10.5599/admet.4.2.292.

A. Veseli, S. Žakelj, A. Kristl. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Development and Industrial Pharmacy 45 (2019) 1717-1724. https://doi.org/10.1080/03639045.2019.1665062.

A. Ono, N. Matsumura, T. Kimoto, Y. Akiyama, S. Funaki, N. Tamura, S. Hayashi, Y. Kojima, M. Fushimi, H. Sudaki, R. Aihara, Y. Haruna, M. Jiko, M. Iwasaki, T. Fujita, K. Sugano. Harmonizing solubility measurement to lower inter-laboratory variance – progress of consortium of biopharmaceutical tools (CoBiTo) in Japan. ADMET & DMPK 7 (2019) 183-195. http://dx.doi.org/10.5599/admet.704.

M. Vertzoni, J. Alsenz, P. Augustijns, A. Bauer-Brandl, C.A.S. Bergström, J. Brouwers, A. Müllerz, G. Perlovich, C. Saal, K. Sugano, C. Reppas. UNGAP best practice for improving solubility data quality of orally administered drugs. European Journal of Pharmaceutical Sciences 168 (2022) 106043. https://doi.org/10.1016/j.ejps.2021.106043.

N. Sun, A. Avdeef. Biorelevant pKa (37 oC) Predicted from the 2D Structure of the Molecule and its pKa at 25oC. Journal of Pharmaceutical and Biomedical 56 (2011) 173-182. https://doi.org/10.1016/j.jpba.¬2011.05.007.

A. Avdeef. Solubility temperature dependence predicted from 2D structure. ADMET & DMPK 3 (2015) 298-344. https://doi.org/10.5599/admet.3.4.259.

A. Avdeef. Multi-lab intrinsic solubility measurement reproducibility in CheqSol and shake-flask methods. ADMET & DMPK 7 (2019) 210-219. http://dx.doi.org/10.5599/admet.698.

A. Avdeef. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET & DMPK 8 (2020) 29-77. https://dx.doi.org/10.5599/admet.766.

A. Avdeef, M. Kansy. Can small drugs predict the intrinsic aqueous solubility of ‘beyond Rule of 5’ big drugs? ADMET & DMPK 8 (2020) 180–206. https://dx.doi.org/10.5599/admet.794.

A. Avdeef, M. Kansy. ‘Flexible-Acceptor’ General Solubility Equation for beyond Rule of 5 drugs. Mol. Pharmaceutics 17 (2021) 3930-3940. https://doi.org/10.1021/acs.molpharmaceut.0c00689.

A. Avdeef, M. Kansy. Predicting solubility of newly-approved drugs (2016-2020) with a simple ABSOLV and GSE(Flexible Acceptor) Consensus Model outperforming random forest regression. Journal of Solution Chemistry 51 (2022) 1020-1055. https://doi.org/10.1007/s10953-022-01141-7.

A. Avdeef, M. Kansy. Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years, Predicting Solubility of Drugs Approved in 2021. Journal of Solution Chemistry 51 (2022) 1455-1481. https://doi.org/10.1007/s10953-022-01199-3.

S.H. Yalkowsky, S.C. Valvani. Solubility and partitioning I: Solubility of nonelectrolytes in water. Journal of Pharmaceutical Sciences 69 (1980) 912-922. https://doi.org/10.1002/jps.2600690814.

S.H. Yalkowsky, S. Banerjee. Aqueous Solubility: Methods of Estimation for Organic Compounds. Marcel Dekker, Inc.: New York. (1992) p. 142. https://api.semanticscholar.org/CorpusID:92804093.

Y. Ran, N, Jain, S.H. Yalkowsky. Prediction of aqueous solubility of organic compounds by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 41 (2001) 1208-1217. https://doi.org/10.1021/ci010287z.

N. Jain, G. Yang, S.G. Machatha, S.H. Yalkowsky. Estimation of the aqueous solubility of weak electrolytes. International Journal of Pharmaceutics 319 (2006) 169-171. https://doi.org/10.1016/j.ijpharm.2006.04.022.

S.H. Yalkowsky, Y. He, P. Jain. Handbook of Aqueous Solubility Data, Second Edition. CRC Press: Boca Raton, FL, (2010). https://doi.org/10.1201/EBK1439802458.

D. Alantari, S. Yalkowsky. Comments on prediction of the aqueous solubility using the general solubility equation (GSE) versus a genetic algorithm and a support vector machine model. Pharmaceutical Development and Technology 23 (2018) 739-740. https://doi.org/10.1080/10837450.2017.1321663.

M.H. Abraham. Scales of hydrogen bonding - their construction and application to physicochemical and biochemical processes. Chemical Society Reviews 22 (1993) 73-83. https://doi.org/10.1039/CS9932200073.

M.H. Abraham, J. Le. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. Journal of Pharmaceutical Sciences 88 (1999) 868-880. https://doi.org/10.1021/js9901007.

J.A. Platts, D. Butina, M.H. Abraham, A. Hersey. Estimation of molecular linear free energy relation descriptors using a group contribution approach. Journal of Chemical Information and Computer Sciences 39 (1999) 835-845. https://doi.org/10.1021/ci980339t.

L. Breiman. Random forests. Machine Learning 45 (2001) 5-32. https://doi.org/10.1023/A:1010933404324.

D.S. Palmer, N.M. O’Boyle, R.C. Glen, J.B.O. Mitchell. Random Forest models to predict aqueous solubility. Journal of Chemical Information and Modeling 47 (2007) 150-158. https://doi.org/10.1021/¬ci060164k.

W.P. Walters. What are our models really telling us? A practical tutorial on avoiding common mistakes when building predictive models, in Chemoinformatics for Drug Discovery. J. Bajorath (Ed.). John Wiley & Sons, Hoboken, NJ, 2014, pp. 1-31. https://doi.org/10.1002/9781118742785.ch1.

A. Liaw. Random Forests What, Why, and How. https://www.youtube.com/watch?v=XJnjlpW9w5A. (YouTube lecture) https://nyhackr.blob.core.windows.net/presentations/Random-Forests-What-Why-and-How_Andy_Liaw.pdf (Accessed 23 Nov 2022).

L.B. Kier. An index of molecular flexibility from kappa shape attributes. Quant. Struct.-Act. Relat. 8 (1989) 221-224. https://doi.org/10.1002/qsar.19890080307.

A. Avdeef. Do you know your r2? ADMET & DMPK 9 (2021) 69-74. https://doi.org/10.5599/admet.888.

C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23 (1997) 3-25. https://doi.org/10.1016/s0169-409x(00)00129-0.

B.C. Doak, B. Over, F. Giordanetto, J. Kihlberg. Oral druggable space beyond the Rule of 5: insights from drugs and clinical candidates. Chemistry & Biology 21 (2014) 1115-1142. https://doi.org/10.1016/j.chembiol.2014.08.013.

D.A. DeGoey, H.-J. Chen, P.B. Cox, M. D. Wendt. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. Journal of Medicinal Chemistry 61 (2018) 2636-2651. https://doi.org/10.1021/acs.jmedchem.7b00717.

G. Ermondi, M. Vallaro, G. Goetz, M. Shalaeva, G. Caron. Experimental lipophilicity for beyond Rule of 5 compounds. Future Drug. Discov. 1 (2019) https://doi.org/10.4155/fdd-2019-0002.

G. Caron, J. Kihlberg, G. Ermondi. Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Medicinal Research Reviews 39 (2019) 1707-1729. https://doi.org/10.1002/med.21562.

G. Ermondi, M. Vallaro, G. Goetz, M. Shalaeva, G. Caron. Updating the portfolio of physicochemical descriptors related to permeability in the beyond the rule of 5 chemical space. European Journal of Pharmaceutical Sciences 146 (2020) 105274. https://doi.org/10.1016/j.ejps.2020.105274.

G. Caron, V. Digiesi, S. Solaro, G. Ermondi. Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discovery Today 25 (2020) 621-627. https://doi.org/10.1016/j.drudis.2020.01.012.

G. Ermondi, V. Poongavanam, M. Vallaro, J. Kihlberg, G. Caron, G. Solubility prediction in the bRo5 chemical space: where are we right now? ADMET & DMPK 8 (2020) 207-214. https://doi.org/10.5599/admet.834.

D.G. Jiménez, M.R. Sebastiano, M. Vallaro, V. Mileo, D. Pizzirani, E. Moretti, G. Ermondi, G. Caron. Designing soluble PROTACs: strategies and preliminary guidelines. Journal of Medicinal Chemistry 65 (2022) 12639-12649. https://doi.org/10.1021/acs.jmedchem.2c00201.

A. Mullard. 2021 FDA drug approvals. The FDA approved 50 novel drugs in 2021, including the first KRAS inhibitor for cancer and the first anti-amyloid antibody for Alzheimer’s disease. Nature Reviews Drug Discovery 21 (2022) 83-88. https://doi.org/10.1038/d41573-022-00001-9.

L.D. Hughes, D.S. Palmer, F. Nigsch, J.B.O. Mitchell. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. Journal of Chemical Information and Modeling 48 (2008) 220-232. https://doi.org/10.1021/ci700307p.

C.A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods 44 (2000) 235-249. https://doi.org/10.1016/s10568719(00)00107-6.

Comments (0)

No login
gif