Targeting hexokinase 2 to enhance anticancer efficacy of trichosanthin in HeLa and SCC25 cell models

J. Luo, N.L. Solimini, S.J. Elledge. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136 (2009) 823-837. https://doi.org/10.1016/j.cell.2009.02.024.

I. Martinez-Reyes, N.S. Chandel. Cancer metabolism: looking forward. Nature Reviews Cancer 21 (2021) 669-680. https://doi.org/10.1038/s41568-021-00378-6.

N.N. Pavlova, J. Zhu, C.B. Thompson. The hallmarks of cancer metabolism: Still emerging. Cell Metab 34 (2022) 355-377. https://doi.org/10.1016/j.cmet.2022.01.007.

Y. Zhou, Y. Guo, K.Y. Tam. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 32 (2022) 441-453. https://doi.org/10.1080/13543776.2022.2027912.

E. Bobrovnikova-Marjon, J.B. Hurov. Targeting metabolic changes in cancer: novel therapeutic approaches. Annu Rev Med 65 (2014) 157-170. https://doi.org/10.1146/annurev-med-092012-112344.

R. Li, S. Mei, Q. Ding, Q. Wang, L. Yu, F. Zi. A pan-cancer analysis of the role of hexokinase II (HK2) in human tumour s. Sci Rep 12 (2022) 18807. https://doi.org/10.1038/s41598-022-23598-8.

I. Elia, M.C. Haigis. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 3 (2021) 21-32. https://doi.org/10.1038/s42255-020-00317-z.

K. Honigova, J. Navratil, B. Peltanova, H.H. Polanska, M. Raudenska, M. Masarik. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 1877 (2022) 188705. https://doi.org/10.1016/j.bbcan.2022.188705.

W. Shan, Y. Zhou, K.Y. Tam. The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov Today 27 (2022) 2574-2585. https://doi.org/10.1016/j.drudis.2022.05.017.

Z.E. Stine, Z.T. Schug, J.M. Salvino, C.V. Dang. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21 (2022) 141-162. https://doi.org/10.1038/s41573-021-00339-6.

S.R. Lin, C.H. Chang, C.F. Hsu, M.J. Tsai, H. Cheng, M.K. Leong, P.J. Sung, J.C. Chen, C.F. Weng. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 177 (2020) 1409-1423. https://doi.org/10.1111/bph.14816.

M. Huang, J.J. Lu, J. Ding. Natural Products in Cancer Therapy: Past, Present and Future. Nat Prod Bioprospect 11 (2021) 5-13. https://doi.org/10.1007/s13659-020-00293-7.

P.C. Shaw, W.L. Chan, H.W. Yeung, T.B. Ng. Minireview: trichosanthin--a protein with multiple pharmacological properties. Life Sci 55 (1994) 253-262. https://doi.org/10.1016/0024-3205(94)00727-6.

O. Sha, J. Niu, T.B. Ng, E.Y. Cho, X. Fu, W. Jiang. Anti- tumour action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol 71 (2013) 1387-1393. https://doi.org/10.1007/s00280-013-2096-y.

W.W. Shi, K.B. Wong, P.C. Shaw. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 10 (2018) 335. https://doi.org/10.3390/toxins10080335.

Y. Tan, J. Xiang, Z. Huang, L. Wang, Y. Huang. Trichosanthin inhibits cell growth and metastasis by promoting pyroptosis in non-small cell lung cancer. J Thorac Dis 14 (2022) 1193-1202. https://doi.org/10.21037/jtd-22-282.

E.F. Fang, C.Z. Zhang, L. Zhang, J.H. Wong, Y.S. Chan, W.L. Pan, X.L. Dan, C.M. Yin, C.H. Cho, T.B. Ng. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One 7 (2012) e41592. https://doi.org/10.1371/journal.pone.0041592.

K. Wang, X. Wang, M. Zhang, Z. Ying, Z. Zhu, K.Y. Tam, C. Li, G. Zhou, F. Gao, M. Zeng, S.C.W. Sze, X. Wang, O. Sha. Trichosanthin Promotes Anti- tumour Immunity through Mediating Chemokines and Granzyme B Secretion in Hepatocellular Carcinoma. Int J Mol Sci 24 (2023) 1416. https://doi.org/10.3390/ijms24021416.

F. Li, Y. Mei, Y. Wang, C. Chen, J. Tu, B. Xiao, L. Xu. Trichosanthin inhibits antigen-specific T cell expansion through nitric oxide-mediated apoptosis pathway. Cell Immunol 234 (2005) 23-30. https://doi.org/10.1016/j.cellimm.2005.04.015.

J.Q. Lu, K.B. Wong, P.C. Shaw. A Sixty-Year Research and Development of Trichosanthin, a Ribosome-Inactivating Protein. Toxins 14 (2022) 1416. https://doi.org/10.3390/toxins14030178.

Y. Chen, M. Zhang, H. Jin, Y. Tang, H. Wang, Q. Xu, Y. Li, F. Li, Y. Huang. Intein-mediated site-specific synthesis of tumour -targeting protein delivery system: Turning PEG dilemma into prodrug-like feature. Biomaterials 116 (2017) 57-68. https://doi.org/10.1016/j.biomaterials.2016.11.033.

C. You, Y. Sun, S. Zhang, G. Tang, N. Zhang, C. Li, X. Tian, S. Ma, Y. Luo, W. Sun, F. Wang, X. Liu, Y. Xiao, Y. Gong, J. Zhang, C. Xie. Trichosanthin enhances sensitivity of non-small cell lung cancer (NSCLC) TRAIL-resistance cells. Int J Biol Sci 14 (2018) 217-227. https://doi.org/10.7150/ijbs.22811.

Z. Zhu, Z. Ying, M. Zeng, Q. Zhang, G. Liao, Y. Liang, C. Li, C. Zhang, X. Wang, W. Jiang, P. Luan, O. Sha. Trichosanthin cooperates with Granzyme B to restrain tumour formation in tongue squamous cell carcinoma. BMC Complement Med Ther 21 (2021) 88. https://doi.org/10.1186/s12906-021-03266-6.

K. Zhang, J. Xu, X. Huang, L. Wu, C. Wen, Y. Hu, Y. Su, Y. Chen, Z. Zhang. Trichosanthin down-regulated p210Bcr-Abl and enhanced imatinib-induced growth arrest in chronic myelogenous leukemia cell line K562. Cancer Chemother Pharmacol 60 (2007) 581-587. https://doi.org/10.1007/s00280-007-0457-0.

W. Li, M. Zheng, S. Wu, S. Gao, M. Yang, Z. Li, Q. Min, W. Sun, L. Chen, G. Xiang, H. Li. Benserazide, a dopadecarboxylase inhibitor, suppresses tumour growth by targeting hexokinase 2. J Exp Clin Cancer Res 36 (2017) 58. https://doi.org/10.1186/s13046-017-0530-4.

E.G. Irene V. Bijnsdorp, Godefridus J. Peters, Analysis of Drug Interactions, in Cancer Cell Culture, I.A. Cree (Ed.), Humana Press, New York, 2011. https://doi.org/10.1007/978-1-61779-080-5

T.C. Chou. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70 (2010) 440-446. https://doi.org/10.1158/0008-5472.CAN-09-1947.

B. El Hassouni, G. Mantini, G. Li Petri, M. Capula, L. Boyd, H.N.W. Weinstein, A. Valles-Marti, M.C.M. Kouwenhoven, E. Giovannetti, B.A. Westerman, G.J. Peters, E.P. Group. To Combine or Not Combine: Drug Interactions and Tools for Their Analysis. Reflections from the EORTC-PAMM Course on Preclinical and Early-phase Clinical Pharmacology. Anticancer Res 39 (2019) 3303-3309. https://doi.org/10.21873/anticanres.13472.

A. Nabbi, K. Riabowol. Rapid Isolation of Nuclei from Cells In Vitro. Cold Spring Harb Protoc 2015 (2015) 769-772. https://doi.org/10.1101/pdb.prot083733.

C. Liu, X. Wang, Y. Zhang. The Roles of HK2 on tumour igenesis of Cervical Cancer. Technol Cancer Res Treat 18 (2019) 1533033819871306. https://doi.org/10.1177/1533033819871306.

C. Liu, H. Li, H. Huang, P. Zheng, Z. Li. The Correlation of HK2 Gene Expression with the Occurrence, Immune Cell Infiltration, and Prognosis of Renal Cell Carcinoma. Dis Markers 2022 (2022) 1452861. https://doi.org/10.1155/2022/1452861.

K.C. Patra, Q. Wang, P.T. Bhaskar, L. Miller, Z. Wang, W. Wheaton, N. Chandel, M. Laakso, W.J. Muller, E.L. Allen, A.K. Jha, G.A. Smolen, M.F. Clasquin, B. Robey, N. Hay. Hexokinase 2 is required for tumour initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24 (2013) 213-228. https://doi.org/10.1016/j.ccr.2013.06.014.

S.N. Garcia, R.C. Guedes, M.M. Marques. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 26 (2019) 7285-7322. https://doi.org/10.2174/0929867326666181213092652.

C.R. Reczek, N.S. Chandel. The Two Faces of Reactive Oxygen Species in Cancer. Annual Review of Cancer Biology 1 (2017) 79-98. https://doi.org/10.1146/annurev-cancerbio-041916-065808.

S. Rodic, M.D. Vincent. Reactive oxygen species (ROS) are a key determinant of cancer's metabolic phenotype. Int J Cancer 142 (2018) 440-448. https://doi.org/10.1002/ijc.31069.

M. Lee, J.H. Yoon. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 6 (2015) 148-161. https://doi.org/10.4331/wjbc.v6.i3.148.

C. Zhu, C. Zhang, X. Cui, J. Wu, Z. Cui, X. Shen. Trichosanthin inhibits cervical cancer by regulating oxidative stress-induced apoptosis. Bioengineered 12 (2021) 2779-2790. https://doi.org/10.1080/21655979.2021.1930335.

B. Wei, Q. Huang, S. Huang, W. Mai, X. Zhong. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-kappaB/p53 pathway. J Pharmacol Sci 131 (2016) 77-83. https://doi.org/10.1016/j.jphs.2016.03.001.

L. Dong, J. He, L. Luo, K. Wang. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 16 (2023) 92. https://doi.org/10.3390/ph16010092.

S.K. Parks, W. Mueller-Klieser, J. Pouyssegur. Lactate and Acidity in the Cancer Microenvironment. Annual Review of Cancer Biology, Vol 4 4 (2020) 141-158. https://doi.org/10.1146/annurev-cancerbio-030419-033556.

P. Wu, Y. Zhou, Y. Guo, S.L. Zhang, K.Y. Tam. Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents. Drug Discov Today 26 (2021) 836-844. https://doi.org/10.1016/j.drudis.2021.01.003.

H.K. Matthews, C. Bertoli, R.A.M. de Bruin. Cell cycle control in cancer. Nat Rev Mol Cell Biol 23 (2022) 74-88. https://doi.org/10.1038/s41580-021-00404-3.

S. Khan, Z. Lopez-Dee, R. Kumar, J. Ling. Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett 337 (2013) 90-95. https://doi.org/10.1016/j.canlet.2013.05.020.

K. Taniguchi, M. Karin. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18 (2018) 309-324. https://doi.org/10.1038/nri.2017.142.

B. Wei, Q. Huang, S. Huang, W. Mai, X. Zhong. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci 131 (2016) 77-83. https://doi.org/10.1016/j.jphs.2016.03.001.

D. Verzella, A. Pescatore, D. Capece, D. Vecchiotti, M.V. Ursini, G. Franzoso, E. Alesse, F. Zazzeroni. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 11 (2020) 210. https://doi.org/10.1038/s41419-020-2399-y.

Y. Chang, W. Xiong, C. Zou, P. Zeng, J. Hou, B. Muhitdinov, Y. Shen, Y. Huang, S. Guo. Mitigation of Anti-Drug Antibody Production for Augmenting Anticancer Efficacy of Therapeutic Protein via Co-Injection of Nano-Rapamycin. Small (2023) e2303916. https://doi.org/10.1002/smll.202303916.

Z. Setayesh-Mehr, M. Poorsargol. Toxic proteins application in cancer therapy. Mol Biol Rep 48 (2021) 3827-3840. https://doi.org/10.1007/s11033-021-06363-4.

Comments (0)

No login
gif