Zhao A, Qin H, Fu X. What determines the regenerative capacity in animals? Bioscience. 2016;66:735–46. https://doi.org/10.1093/biosci/biw079. Oxford Academic.
Peach MS, Ramos DM, James R, Morozowich NL, Mazzocca AD, Doty SB, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12:e0174789. https://doi.org/10.1371/journal.pone.0174789. Public Library of Science.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024. Elsevier.
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem cell therapy: from idea to clinical practice. Int J Mol Sci. 2022;23:2850. https://doi.org/10.3390/ijms23052850.
Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9:131. https://doi.org/10.1186/s13287-018-0876-3. BioMed Central Ltd.
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and hurdles in stem cells application and production for brain transplantation. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.01194
Ikehara S. Grand challenges in stem cell treatments. Front Cell Dev Biol. 2013;1. https://doi.org/10.3389/fcell.2013.00002
Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther. 2021;12:521. https://doi.org/10.1186/s13287-021-02596-z. BioMed Central Ltd.
Stevens LC, Varnum DS. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol. 1974;37:369–80. https://doi.org/10.1016/0012-1606(74)90155-9. Academic Press.
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8. https://doi.org/10.1073/pnas.78.12.7634. Proceedings of the National Academy of Sciences.
Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science (80-). 1998;282:1145–7. https://doi.org/10.1126/science.282.5391.1145. American Association for the Advancement of Science.
De Los AA, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, et al. Hallmarks of pluripotency. Nature. 2015;525:469–78. https://doi.org/10.1038/nature15515. Nature Publishing Group.
Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336:688–90. https://doi.org/10.1038/336688a0. Nature Publishing Group.
Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7. https://doi.org/10.1038/336684a0. (Nature Publishing Group.
Shen MM, Leder P. Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci U S A. 1992;89:8240–4. https://doi.org/10.1073/pnas.89.17.8240. Proceedings of the National Academy of Sciences.
Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115:281–92. https://doi.org/10.1016/S0092-8674(03)00847-X. Cell Press.
Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2:185–90. https://doi.org/10.1038/nmeth744. Nature Publishing Group.
Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95. https://doi.org/10.1007/bf03401776. BioMed Central.
Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309:255–6. https://doi.org/10.1038/309255a0. Nature Publishing Group.
Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103:389–98. https://doi.org/10.1263/jbb.103.389. Elsevier.
Lou YJ, Liang XG. Embryonic stem cell application in drug discovery. Acta Pharmacol Sin. 2011;32:152–9. https://doi.org/10.1038/aps.2010.194. Nature Publishing Group.
Lancaster MA, Knoblich JA. Organogenesisin a dish: modeling development and disease using organoid technologies. Science (80-). 2014;345:1247125. https://doi.org/10.1126/science.1247125. American Association for the Advancement of Science.
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–8. https://doi.org/10.1038/nature09941. Nature Publishing Group.
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. https://doi.org/10.1038/nature12517. Nature Publishing Group.
Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–10. https://doi.org/10.1038/nature09691. Nature Publishing Group.
Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26. https://doi.org/10.1038/ncb2894. >Nature Publishing Group.
Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun. 2019;10:3802. https://doi.org/10.1038/s41467-019-11702-y. Nature Publishing Group.
Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell. 2020;27:523–31. https://doi.org/10.1016/j.stem.2020.09.014. Cell Press.
Petrigliano FA, Liu NQ, Lee S, Tassey J, Sarkar A, Lin Y, et al. Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. npj Regen Med. 2021;6:77. https://doi.org/10.1038/s41536-021-00187-3.
Albini S, Coutinho P, Malecova B, Giordani L, Savchenko A, Forcales SV, et al. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep. 2013;3:661–70. https://doi.org/10.1016/j.celrep.2013.02.012.
Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38. https://doi.org/10.1016/j.cell.2013.05.006. Elsevier B.V.
Zhu K, Wu Q, Ni C, Zhang P, Zhong Z, Wu Y, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ Res. 2018;122:958–69. https://doi.org/10.1161/CIRCRESAHA.117.311578. Lippincott Williams and Wilkins.
Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990-999.e4. https://doi.org/10.1053/j.gastro.2008.10.047. W.B. Saunder.
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52. https://doi.org/10.1038/nbt1393. Nature Publishing Group.
Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68. https://doi.org/10.1038/nm1495. Nature Publishing Group.
Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, et al. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010;120:305–13. https://doi.org/10.3109/00207450903585290. Taylor & Francis.
Wysoczynski M. A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. Eur Heart J. 2020;41:2397–404. https://doi.org/10.1093/eurheartj/ehz787. Oxford Academic.
Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200. https://doi.org/10.1038/nrm.2016.10. Nature Publishing Group.
Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62:329–37. https://doi.org/10.18388/abp.2015_1023.
Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyvk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40. https://doi.org/10.1097/00007890-197404000-00001.
Comments (0)