Aimon S, Callan-Jones A, Berthaud A et al (2014) Membrane shape modulates transmembrane protein distribution. Dev Cell 28(2):212–218. https://doi.org/10.1016/j.devcel.2013.12.012
Article CAS PubMed PubMed Central Google Scholar
Akimov SA, Volynsky PE, Galimzyanov TR et al (2017) Pore formation in lipid membrane ii: Energy landscape under external stress. Sci Rep 7(1):1–20. https://doi.org/10.1038/s41598-017-12749-x
Alberts B, Heald R, Johnson A et al (2022) Molecular Biology of the Cell, 7th edn. W. W. Norton & Company
Alexiev U (2013) Dynamics of helix 8 in gpcr function Encyclopedia of Biophysics Roberts. Springer, Berlin, pp 549–552. https://doi.org/10.1007/978-3-642-16712-6_78
Anbazhagan V, Schneider D (2010) The membrane environment modulates self-association of the human GpA TM domain-implications for membrane protein folding and transmembrane signaling. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1798(10):1899–1907. https://doi.org/10.1016/j.bbamem.2010.06.027
Article CAS PubMed Google Scholar
Anderluh G, Lakey J (eds) (2010) Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins. Springer, NY
Antonny B (2011) Mechanisms of membrane curvature sensing. Annu Rev Biochem 80:101–123. https://doi.org/10.1146/annurev-biochem-052809-155121
Article CAS PubMed Google Scholar
Artim CM, Phan NN, Alabi CA (2018) Effect of composition on antibacterial activity of sequence-defined cationic oligothioetheramides. ACS Infect Dis 4(8):1257–1263. https://doi.org/10.1021/acsinfecdis.8b00079
Article CAS PubMed Google Scholar
Awile O, Krisko A, Sbalzarini IF et al (2010) Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium deinococcus radiodurans. PLoS Comput Biol 6(7):e1000,854. https://doi.org/10.1371/journal.pcbi.1000854
Babu MM (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 44(5):1185–1200. https://doi.org/10.1042/BST20160172
Article CAS PubMed PubMed Central Google Scholar
Balsera M, Goetze TA, Kovács-Bogdán E et al (2009) Characterization of tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to \(\rm Ca^\) and a stromal regulatory disulfide bridge. J Biol Chem 284(5):2603–2616. https://doi.org/10.1074/jbc.M807134200
Article CAS PubMed Google Scholar
Baumgart T, Capraro BR, Zhu C et al (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62:483–506. https://doi.org/10.1146/annurev.physchem.012809.103450
Article CAS PubMed PubMed Central Google Scholar
Bechinger B, Kim Y, Chirlian L et al (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR 1(2):167–173. https://doi.org/10.1007/BF01877228
Article CAS PubMed Google Scholar
Bhatia VK, Madsen KL, Bolinger PY et al (2009) Amphipathic motifs in bar domains are essential for membrane curvature sensing. EMBO J 28(21):3303–3314. https://doi.org/10.1038/emboj.2009.261
Article CAS PubMed PubMed Central Google Scholar
Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21:381–390. https://doi.org/10.1016/j.semcdb.2009.12.004
Article CAS PubMed Google Scholar
Bigay J, Gounon P, Robineau S et al (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426(6966):563–566. https://doi.org/10.1038/nature02108
Article CAS PubMed Google Scholar
Bigay J, Casella JF, Drin G et al (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24(13):2244–2253. https://doi.org/10.1038/sj.emboj.7600714
Article CAS PubMed PubMed Central Google Scholar
Bigelow HR, Petrey DS, Liu J et al (2004) Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 32(8):2566–2577. https://doi.org/10.1093/nar/gkh580
Article CAS PubMed PubMed Central Google Scholar
Bodescu M, Rosenkötter F, Fritz J (2017) Time lapse AFM on vesicle formation from mixed lipid bilayers induced by the membrane-active peptide melittin. Soft Matter 13(38):6845–6851. https://doi.org/10.1039/C7SM01095H
Article CAS PubMed Google Scholar
Böhme S, Padmavathi PV, Holterhues J et al (2009) Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR. Phys Chem Chem Phys 11(31):6770–6777. https://doi.org/10.1039/B907117M
Boman H (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
Article CAS PubMed Google Scholar
Botelho AV, Huber T, Sakmar TP et al (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91(12):4464–4477. https://doi.org/10.1529/biophysj.106.082776
Article CAS PubMed PubMed Central Google Scholar
Brahma R, Raghuraman H (2022) Measuring membrane penetration depths and conformational changes in membrane peptides and proteins. J Membr Biol 255(4–5):469–483. https://doi.org/10.1007/s00232-022-00224-2
Article CAS PubMed Google Scholar
Brasseur R (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem 266(24):16,120-16,127. https://doi.org/10.1016/S0021-9258(18)98524-8
Breukink E, van Kraaij C, van Dalen A et al (1998) The orientation of nisin in membranes. Biochemistry (Mosc ) 37(22):8153–8162. https://doi.org/10.1021/bi972797l
Breukink E, Wiedemann I, Cv Kraaij et al (1999) Use of the cell wall precursor lipid ii by a pore-forming peptide antibiotic. Science 286(5448):2361–2364. https://doi.org/10.1126/science.286.5448.2361
Article CAS PubMed Google Scholar
Breukink E, van Heusden HE, Vollmerhaus PJ et al (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278(22):19,898-19,903. https://doi.org/10.1074/jbc.M301463200
Brochard-Wyart F, de Gennes PG, Sandre O (2000) Transient pores in stretched vesicles: role of leak-out. Phys A 278(1–2):32–51. https://doi.org/10.1016/S0378-4371(99)00559-2
Brooks RL, Dixon AM (2020) Revealing the mechanism of protein-lipid interactions for a putative membrane curvature sensor in plant endoplasmic reticulum. Biochimica et Biophysica Acta (BBA)-Biomembranes 1862(3):183,160. https://doi.org/10.1016/j.bbamem.2019.183160
Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339. https://doi.org/10.1529/biophysj.108.133173
Article CAS PubMed PubMed Central Google Scholar
Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry (Mosc ) 26(1):39–45. https://doi.org/10.1021/bi00375a006
Chattopadhyay A, McNamee MG (1991) Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method. Biochemistry (Mosc ) 30(29):7159–7164. https://doi.org/10.1021/bi00243a017
Chattopadhyay G, Varadarajan R (2019) Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci 28(6):1127–1134. https://doi.org/10.1002/pro.3622
Article CAS PubMed PubMed Central Google Scholar
Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84(6):3751–3758. https://doi.org/10.1016/S0006-3495(03)75103-0
Article CAS PubMed PubMed Central Google Scholar
Chen H, Fre S, Slepnev VI et al (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394(6695):793–797. https://doi.org/10.1038/29555
Comments (0)