Immunohistological analysis of B7-H4, IDO1, and PD-L1 expression and tumor immune microenvironment based on triple-negative breast cancer subtypes

Iacopetta D, Ceramella J, Baldino N, Sinicropi MS, Catalano A. Targeting breast cancer: an overlook on current strategies. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043643.

Article  PubMed  PubMed Central  Google Scholar 

Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396:1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9.

Article  PubMed  Google Scholar 

Salceda S, Tang T, Kmet M, Munteanu A, Ghosh M, Macina R, et al. The immunomodulatory protein B7–H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res. 2005;306:128–41. https://doi.org/10.1016/j.yexcr.2005.01.018.

Article  CAS  PubMed  Google Scholar 

Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H, et al. B7–H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003;18:849–61. https://doi.org/10.1016/s1074-7613(03)00152-3.

Article  CAS  PubMed  Google Scholar 

Podojil JR, Miller SD. Potential targeting of B7–H4 for the treatment of cancer. Immunol Rev. 2017;276:40–51. https://doi.org/10.1111/imr.12530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinneer K, Wortmann P, Cooper ZA, Dickinson NJ, Masterson L, Cailleau T, et al. Design and preclinical evaluation of a novel B7–H4-directed antibody-drug conjugate, AZD8205, alone and in combination with the PARP1-selective inhibitor AZD5305. Clin Cancer Res. 2023;29:1086–101. https://doi.org/10.1158/1078-0432.CCR-22-2630.

Article  CAS  PubMed  Google Scholar 

Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3- dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 2018;336:175–203. https://doi.org/10.1016/bs.ircmb.2017.07.004.

Article  CAS  PubMed  Google Scholar 

Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, et al. Indoleamine 2,3- dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022. https://doi.org/10.1016/j.ctrv.2022.102461.

Article  PubMed  Google Scholar 

Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019;20:1083–97. https://doi.org/10.1016/S1470-2045(19)30274-8.

Article  CAS  PubMed  Google Scholar 

Kjeldsen JW, Lorentzen CL, Martinenaite E, Ellebaek E, Donia M, Holmstroem RB, et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nat Med. 2021;27:2212–23. https://doi.org/10.1038/s41591-021-01544-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schalper KA, Carvajal-Hausdorf D, McLaughlin J, Altan M, Velcheti V, Gaule P, et al. Differential expression and significance of PD-L1, IDO-1, and B7–H4 in human lung cancer. Clin Cancer Res. 2017;23:370–8. https://doi.org/10.1158/1078-0432.CCR-16-0150.

Article  CAS  PubMed  Google Scholar 

O’Meara TA, Tolaney SM. Tumor mutational burden as a predictor of immunotherapy response in breast cancer. Oncotarget. 2021;12:394–400. https://doi.org/10.18632/oncotarget.27877.

Article  PubMed  PubMed Central  Google Scholar 

McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32:661–72. https://doi.org/10.1016/j.annonc.2021.02.006.

Article  CAS  PubMed  Google Scholar 

El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, et al. The tale of TILs in breast cancer: a report from the International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer. 2021;7:150. https://doi.org/10.1038/s41523-021-00346-1.

Article  PubMed  PubMed Central  Google Scholar 

Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5365–86. https://doi.org/10.7150/thno.58390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaghjiani RG, Skitzki JJ. Tertiary lymphoid structures as mediators of immunotherapy response. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14153748.

Article  PubMed  Google Scholar 

Hagenaars SC, Vangangelt KMH, Van Pelt GW, Karancsi Z, Tollenaar RAEM, Green AR, et al. Standardization of the tumor-stroma ratio scoring method for breast cancer research. Breast Cancer Res Treat. 2022;193:545–53. https://doi.org/10.1007/s10549-022-06587-3.

Article  PubMed  PubMed Central  Google Scholar 

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67. https://doi.org/10.1172/JCI45014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0157368.

Article  PubMed  PubMed Central  Google Scholar 

Kumar S, Bal A, Das A, Bhattacharyya S, Laroiya I, Khare S, et al. Molecular subtyping of triple negative breast cancer by surrogate immunohistochemistry markers. Appl Immunohistochem Mol Morphol. 2021;29:251–7. https://doi.org/10.1097/PAI.0000000000000897.

Article  CAS  PubMed  Google Scholar 

Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Feasibility of classification of triple negative breast cancer by immunohistochemical surrogate markers. Clin Breast Cancer. 2018. https://doi.org/10.1016/j.clbc.2018.03.012.

Article  PubMed  Google Scholar 

Choupani E, Mahmoudi Gomari M, Zanganeh S, Nasseri S, Haji-Allahverdipoor K, Rostami N, et al. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: a review. Pharmacol Rev. 2023;75:309–27. https://doi.org/10.1124/pharmrev.122.000665.

Article  CAS  PubMed  Google Scholar 

Huang X, Ding Q, Guo H, Gong Y, Zhao J, Zhao M, et al. Comparison of three FDA- approved diagnostic immunohistochemistry assays of PD-L1 in triple-negative breast carcinoma. Hum Pathol. 2021;108:42–50. https://doi.org/10.1016/j.humpath.2020.11.004.

Article  CAS  PubMed  Google Scholar 

Vennapusa B, Baker B, Kowanetz M, Boone J, Menzl I, Bruey JM, et al. Development of a PD-L1 complementary diagnostic immunohistochemistry assay (SP142) for atezolizumab. Appl Immunohistochem Mol Morphol. 2019;27:92–100. https://doi.org/10.1097/PAI.0000000000000594.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: Molecular, morphological, and clinical features. J Zhejiang Univ Sci B. 2022;23:617–24. https://doi.org/10.1631/jzus.B2200113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashmi AA, Naz S, Hashmi SK, Hussain ZF, Irfan M, Bakar SMA, et al. Cytokeratin 5/6 and cytokeratin 8/18 expression in triple negative breast cancers: Clinicopathologic significance in South-Asian population. BMC Res Notes. 2018;11:372. https://doi.org/10.1186/s13104-018-3477-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sofopoulos M, Fortis SP, Vaxevanis CK, Sotiriadou NN, Arnogiannaki N, Ardavanis A, et al. The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer. Cancer Immunol Immunother. 2019;68:1733–45. https://doi.org/10.1007/s00262-019-02407-8.

Article  CAS  PubMed  Google Scholar 

Altan M, Kidwell KM, Pelekanou V, Carvajal-Hausdorf DE, Schalper KA, Toki MI, et al. Association of B7–H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer. NPJ Breast Cancer. 2018;4:40. https://doi.org/10.1038/s41523-018-0095-1.

Article  PubMed  PubMed Central  Google Scholar 

Alkhayyal N, Elemam NM, Hussein A, Magdub S, Jundi M, Maghazachi AA, et al. (2022) Expression of immune checkpoints (PD-L1 and IDO) and tumour-infiltrating lymphocytes in breast cancer. Heliyon 10.1016 j.heliyon.2022.e10482

Wang L, Yang C, Liu XB, Wang L, Kang FB. B7–H4 overexpression contributes to poor prognosis and drug-resistance in triple-negative breast cancer. Cancer Cell Int. 2018;18:100. https://doi.org/10.1186/s12935-018-0597-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Park S, Cho MS, Lim W, Moon BI, Sung SH. Strong correlation of indoleamine 2,3-dioxygenase 1 expression with basal-like phenotype and increased lymphocytic infiltration in triple-negative breast cancer. J Cancer. 2017;8:124–30. https://doi.org/10.7150/jca.17437.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim NI, Park MH, Cho N, Lee JS. Comparison of the clinicopathologic features and T-cell infiltration of B7–H3 and B7–H4 expression in triple-negative breast cancer subtypes. Appl Immunohistochem Mol Morphol. 2022;30:246–56. https://doi.org/10.1097/PAI.0000000000001001.

Article  CAS 

Comments (0)

No login
gif