Kansagra AP, Yu JPJ, Chatterjee AR, et al. Big Data and the Future of Radiology Informatics. Acad Radiol. 2016;23(1):30-42. https://doi.org/10.1016/j.acra.2015.10.004
Aiello M, Cavaliere C, D’Albore A, Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med. 2019;8(3). https://doi.org/10.3390/jcm8030316
Murdoch TB, Detsky AS. The Inevitable Application of Big Data to Health Care. JAMA. 2013;309(13):1351-1352. https://doi.org/10.1001/jama.2013.393
Article CAS PubMed Google Scholar
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. https://doi.org/10.1038/s41568-018-0016-5
Article CAS PubMed PubMed Central Google Scholar
Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Jpn J Radiol. 2019;37(1):15-33. https://doi.org/10.1007/s11604-018-0795-3
McBee MP, Awan OA, Colucci AT, et al. Deep Learning in Radiology. Acad Radiol. 2018;25(11):1472-1480. https://doi.org/10.1016/j.acra.2018.02.018
Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14-24. https://doi.org/10.1016/j.ejrad.2019.02.038
Roemer FW, Demehri S, Omoumi P, et al. State of the Art: Imaging of Osteoarthritis—Revisited 2020. Radiology. 2020;296(1):5-21. https://doi.org/10.1148/radiol.2020192498
Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73(9):1659-1664. https://doi.org/10.1136/annrheumdis-2013-203355
Turkiewicz A, Petersson IF, Björk J, et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthritis Cartilage. 2014;22(11):1826-1832. https://doi.org/10.1016/j.joca.2014.07.015
Article CAS PubMed Google Scholar
Dunn R, Greenhouse J, James D, Ohlssen D, Mesenbrink P. Risk Scoring for Time to End-Stage Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2020;28. https://doi.org/10.1016/j.joca.2019.12.013
Koplas M, Schils J, Sundaram M. The painful knee: Choosing the right imaging test. Cleve Clin J Med. 2008;75(5):377. http://www.ccjm.org/content/75/5/377.abstract
Wang K, Kim HA, Felson DT, et al. Radiographic Knee Osteoarthritis and Knee Pain: Cross-sectional study from Five Different Racial/Ethnic Populations. Sci Rep. 2018;8(1):1364. https://doi.org/10.1038/s41598-018-19470-3
Article CAS PubMed PubMed Central Google Scholar
Petersen TL, Engh GA. Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty. 1988;3(1):67-72. https://doi.org/10.1016/S0883-5403(88)80054-8
Article CAS PubMed Google Scholar
Gu S, Kuriyama S, Nakamura S, Nishitani K, Ito H, Matsuda S. Underhang of the tibial component increases tibial bone resorption after total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy. 2019;27(4):1270-1279. https://doi.org/10.1007/s00167-018-5309-4
Meneghini RM, Mont MA, Backstein DB, Bourne RB, Dennis DA, Scuderi GR. Development of a Modern Knee Society Radiographic Evaluation System and Methodology for Total Knee Arthroplasty. J Arthroplasty. 2015;30(12):2311-2314. https://doi.org/10.1016/j.arth.2015.05.049
Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach. Sci Rep. 2018;8(1):1727. https://doi.org/10.1038/s41598-018-20132-7
Article CAS PubMed PubMed Central Google Scholar
Leung K, Zhang B, Tan J, et al. Prediction of Total Knee Replacement and Diagnosis of Osteoarthritis by Using Deep Learning on Knee Radiographs: Data from the Osteoarthritis Initiative. Radiology. 2020;296(3):584-593. https://doi.org/10.1148/radiol.2020192091
Antony J, McGuinness K, O’Connor N, Moran K. Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks. In: ; 2016. https://doi.org/10.1109/ICPR.2016.7899799
Górriz M, Antony J, McGuinness K, Giró-i-Nieto X, O’Connor NE. Assessing Knee OA Severity with CNN attention-based end-to-end architectures. In: Cardoso MJ, Feragen A, Glocker B, et al., eds. Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning. Vol 102. Proceedings of Machine Learning Research. PMLR; 2019:197–214. https://proceedings.mlr.press/v102/gorriz19a.html
Wahyuningrum RT, Anifah L, Eddy Purnama IK, Hery Purnomo M. A New Approach to Classify Knee Osteoarthritis Severity from Radiographic Images based on CNN-LSTM Method. In: 2019 IEEE 10th International Conference on Awareness Science and Technology (ICAST). ; 2019:1–6. https://doi.org/10.1109/ICAwST.2019.8923284
Chen P, Gao L, Shi X, Allen K, Yang L. Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Computerized Medical Imaging and Graphics. 2019;75:84-92. https://doi.org/10.1016/j.compmedimag.2019.06.002
Article PubMed PubMed Central Google Scholar
Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699-. https://doi.org/10.1371/journal.pmed.1002699
25.Ramkumar PN, Karnuta JM, Navarro SM, et al. Deep Learning Preoperatively Predicts Value Metrics for Primary Total Knee Arthroplasty: Development and Validation of an Artificial Neural Network Model. J Arthroplasty. 2019;34(10):2220-2227.e1. https://doi.org/10.1016/j.arth.2019.05.034
26.Yi PH, Wei J, Kim TK, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee. 2020;27(2):535-542. https://doi.org/10.1016/j.knee.2019.11.020
27.Marcovici PA, Taylor GA. JOURNAL CLUB: Structured Radiology Reports Are More Complete and More Effective Than Unstructured Reports. American Journal of Roentgenology. 2014;203(6):1265-1271. https://doi.org/10.2214/AJR.14.12636
28.Brady AP. Error and discrepancy in radiology: inevitable or avoidable? Insights Imaging. 2017;8(1):171-182. https://doi.org/10.1007/s13244-016-0534-1
29.Braun HJ, Gold GE. Diagnosis of osteoarthritis: Imaging. Bone. 2012;51(2):278-288. https://doi.org/10.1016/j.bone.2011.11.019
Kohn MD, Sassoon AA, Fernando ND. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res. 2016;474(8). https://journals.lww.com/clinorthop/Fulltext/2016/08000/Classifications_in_Brief__Kellgren_Lawrence.28.aspx
31.Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234-1240. https://doi.org/10.1093/bioinformatics/btz682
Article CAS PubMed Google Scholar
Wolf T, Debut L, Sanh V, et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv. 2019;abs/1910.03771.
Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In: Chaudhuri K, Salakhutdinov R, eds. Proceedings of the 36th International Conference on Machine Learning. Vol 97. Proceedings of Machine Learning Research. PMLR; 2019:6105–6114. https://proceedings.mlr.press/v97/tan19a.html
34.DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988;44(3):837-845. https://doi.org/10.2307/2531595
Article CAS PubMed Google Scholar
35.Prezja F, Paloneva J, Pölönen I, Niinimäki E, Äyrämö S. DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Sci Rep. 2022;12(1):18573. https://doi.org/10.1038/s41598-022-23081-4
Article CAS PubMed PubMed Central Google Scholar
Wood DA, Lynch J, Kafiabadi S, et al. Automated Labelling using an Attention model for Radiology reports of MRI scans (ALARM). In: Arbel T, ben Ayed I, de Bruijne M, Descoteaux M, Lombaert H, Pal C, eds. Proceedings of the Third Conference on Medical Imaging with Deep Learning. Vol 121. Proceedings of Machine Learning Research. PMLR; 2020:811–826. https://proceedings.mlr.press/v121/wood20a.html
Smit A, Jain S, Rajpurkar P, Pareek A, Ng A, Lungren M. Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics; 2020:1500–1519. https://doi.org/10.18653/v1/2020.emnlp-main.117
Marques G, Agarwal D, de la Torre Díez I. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Appl Soft Comput. 2020;96:106691. https://doi.org/10.1016/j.asoc.2020.106691
Nayak DR, Padhy N, Mallick PK, Zymbler M, Kumar S. Brain Tumor Classification Using Dense Efficient-Net. Axioms. 2022;11(1). https://doi.org/10.3390/axioms11010034
Oloko-Oba M, Viriri S. Ensemble of EfficientNets for the Diagnosis of Tuberculosis. lo Bosco G, ed. Comput Intell Neurosci. 2021;2021:9790894. https://doi.org/10.1155/2021/9790894
Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL). Published online July 10, 2013.
Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel CA. MixMatch: A Holistic Approach to Semi-Supervised Learning. In: Wallach H, Larochelle H, Beygelzimer A, d Alché-Buc F, Fox E, Garnett R, eds. Advances in Neural Information Processing Systems. Vol 32. Curran Associates, Inc.; 2019. https://proceedings.neurips.cc/paper/2019/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf
Laine S, Aila T. Temporal Ensembling for Semi-Supervised Learning. ArXiv. 2016;abs/1610.02242.
44.Verma V, Lamb A, Kannala J, Bengio Y, Lopez-Paz D. Interpolation Consistency Training for Semi-Supervised Learning. Neural Netw. 2019;145:90-106.
Huo J, Ouyang X, Si L, et al. Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency. Med Image Anal. 2022;80:102508. https://doi.org/10.1016/j.media.2022.102508
46.Nguyen HH, Saarakkala S, Blaschko MB, Tiulpin A. Semixup: In- and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading From Plain Radiographs. IEEE Trans Med Imaging. 2020;39(12):4346-4356. https://doi.org/10.1109/TMI.2020.3017007
47.Irvin J, Rajpurkar P, Ko M, et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:590-597. https://doi.org/10.1609/aaai.v33i01.3301590
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Published online 2017:3462–3471.
Comments (0)