Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.
Friedman DS, Foster PJ, Aung T, He M. Angle closure and angle-closure glaucoma: what we are doing now and what we will be doing in the future. Clin Exp Ophthalmol. 2012;40(4):381–7. https://doi.org/10.1111/j.1442-9071.2012.02774.x.
Ang LP, Aung T, Chua WH, Yip LW, Chew PT. Visual field loss from primary angle-closure glaucoma: a comparative study of symptomatic and asymptomatic disease. Ophthalmology. 2004;111(9):1636–40. https://doi.org/10.1016/j.ophtha.2004.01.032.
Wang L, Huang W, Huang S, et al. Ten-year incidence of primary angle closure in elderly Chinese: the Liwan Eye Study. Br J Ophthalmol. 2019;103(3):355–60. https://doi.org/10.1136/bjophthalmol-2017-311808.
Thomas R, George R, Parikh R, Muliyil J, Jacob A. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol. 2003;87(4):450–4. https://doi.org/10.1136/bjo.87.4.450.
Article CAS PubMed PubMed Central Google Scholar
Wilensky JT, Kaufman PL, Frohlichstein D, Gieser DK, Kass MA, Ritch R, Anderson R. Follow-up of angle-closure glaucoma suspects. Am J Ophthalmol. 1993;115(3):338–46. https://doi.org/10.1016/s0002-9394(14)73585-8.
Article CAS PubMed Google Scholar
Alsbirk FH. Anatomical risk factors in primary angle-closure glaucoma. A ten year follow up survey based on limbal and axial anterior chamber depths in a high risk population. Int Ophthalmol. 1992;16(4–5):265–72. https://doi.org/10.1007/BF00917973.
Article CAS PubMed Google Scholar
He M, Jiang Y, Huang S, Chang DS, Munoz B, Aung T, Foster PJ, Friedman DS. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomized controlled trial. Lancet. 2019;393(10181):1609–18. https://doi.org/10.1016/S01406736(18)32607-2.
Aptel F, Denis P. Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010;117(1):3–10. https://doi.org/10.1016/j.ophtha.2009.10.030.
Moghimi S, Vahedian Z, Fakhraie G, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013;155(4):664-673.e1. https://doi.org/10.1016/j.ajo.2012.10.014.
Xu BY, Friedman DS, Foster PJ, et al. Ocular biometric risk factors for progression of primary angle closure disease: the Zhongshan Angle Closure Prevention Trial. Ophthalmology. 2022;129(3):267–75. https://doi.org/10.1016/j.ophtha.2021.10.003.
Ramani KK, Mani B, George RJ, Lingam V. Follow-up of primary angle closure suspects after laser peripheral iridotomy using ultrasound biomicroscopy and A-scan biometry for a period of 2 years. J Glaucoma. 2009;18(7):521–7. https://doi.org/10.1097/IJG.0b013e318193c12d.
Neoh FP, Y A , Siti AA, Liza-Sharmini AT. Anterior segment biometry in primary angle closure glaucoma patients with visual field progression: comparison between Malays and Chinese. J Curr Glaucoma Pract. 2023;17(1):3–8. https://doi.org/10.5005/jp-journals-10078-1391.
Wang YE, Li Y, Wang D, He M, Lin S. Comparison of factors associated with occludable angle between american Caucasians and ethnic Chinese. Invest Ophthalmol Vis Sci. 2013;54(12):7717–23. https://doi.org/10.1167/iovs.13-12850.
Article PubMed PubMed Central Google Scholar
Wang N, Ouyang J, Zhou W, Lai M, Ye T, Zeng M, Chen J. Multiple patterns of angle closure mechanisms in primary angle closure glaucoma in Chinese. Zhonghua Yan Ke Za Zhi. 2000;36(1):46–6.
Song MK, Shin JW, Sung KR. Factors associated with deterioration of primary angle closure after lens extraction. J Clin Med. 2022;11(9):2557. https://doi.org/10.3390/jcm11092557.
Article PubMed PubMed Central Google Scholar
Song MK, Sung KR, Shin JW, Jo YH, Won HJ. Glaucomatous progression after lens extraction in primary angle closure disease spectrum. J Glaucoma. 2020;29(8):711–7. https://doi.org/10.1097/IJG.0000000000001537.
Nonaka A, Kondo T, Kikuchi M, Yamashiro K, Fujihara M, Iwawaki T, Yamamoto K, Kurimoto Y. Cataract surgery for residual angle closure after peripheral laser iridotomy. Ophthalmology. 2005;112(6):974–9. https://doi.org/10.1016/j.ophtha.2004.12.042.
Stock RA, Röhrig MW, Mezzomo CD, Bonamigo EL. Phacoemulsification: an alternative for prophylaxis of a glaucomatous crisis. Clin Ophthalmol. 2019;5(13):1721–6. https://doi.org/10.2147/OPTH.S223496.
Kurysheva NI, Pomerantsev AL, Rodionova OY, Sharova GA. Comparison of lens extraction versus laser iridotomy on anterior segment, choroid, and intraocular pressure in primary angle closure using machine learning. J Glaucoma. 2023;32(6):e43–55. https://doi.org/10.1097/IJG.0000000000002145.
Bo J, Changulani T, Cheng ML, Tatham AJ. Outcome following laser peripheral iridotomy and predictors of future lens extraction. J Glaucoma. 2018;27(3):275–80. https://doi.org/10.1097/IJG.0000000000000863.
He M, Foster PJ, Johnson GJ, Khaw PT. Angle-closure glaucoma in East Asian and European people. Different diseases? Eye (Lond). 2006;20(1):3–12. https://doi.org/10.1038/sj.eye.6701797.
Article CAS PubMed Google Scholar
Koh V, Keshtkaran MR, Hernstadt D, Aquino MCD, Chew PT, Sng C. Predicting the outcome of laser peripheral iridotomy for primary angle closure suspect eyes using anterior segment optical coherence tomography. Acta Ophthalmol. 2019;97(1):e57–63. https://doi.org/10.1111/aos.13822.
Kumar RS, Baskaran M, Chew PT, et al. Prevalence of plateau iris in primary angle closure suspects an ultrasound biomicroscopy study. Ophthalmology. 2008;115(3):430–4. https://doi.org/10.1016/j.ophtha.2007.07.026.
Cho HK, Kee C, Yang H, et al. Comparison of circumferential peripheral angle closure using iridotrabecular contact index after laser iridotomy versus combined laser iridotomy and iridoplasty. Acta Ophthalmol. 2017;95(7):e539–47. https://doi.org/10.1111/aos.13450.
Azuara-Blanco A, Burr J, Ramsay C, et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial. Lancet. 2016;388(10052):1389–97. https://doi.org/10.1016/S0140-6736(16)30956-4.
Zhou M, Wang W, Huang W, et al. Is increased choroidal thickness association with primary angle closure? Acta Ophthalmol. 2014;92(7):e514–20. https://doi.org/10.1111/aos.12403.
Kurysheva NI, Rodionova OYe, Pomerantsev AL, Sharova GA. Comparative study of predictors of hypotensive efficacy of laser peripheral iridotomy and lensectomy in patients with primary anterior chamber angle closure based on machine learning methods. Biomed Signal Process Control. 2023;85:104884. https://doi.org/10.1016/j.bspc.2023.104884.
Vercellin ACV, Harris A, Cordell JV, Do T, Moroney J, Belamkar A, Siesky B. Mathematical modeling and glaucoma: the need for an individualized approach to risk assessment. J Model Ophthalmol. 2016;1:6–20.
Harris A, Guidoboni G, Arciero JC, Amireskandari A, Tobe LA, Siesky BA. Ocular hemodynamics and glaucoma: the role of mathematical modeling. Eur J Ophthalmol. 2013;23(2):139–46. https://doi.org/10.5301/ejo.5000255.
Article PubMed PubMed Central Google Scholar
Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011;93(1):4–12. https://doi.org/10.1016/j.exer.2010.09.014.
Article CAS PubMed Google Scholar
Szopos M, Cassani S, Guidoboni G, Prud'Homme C, Sacco R et al. Mathematical modeling of aqueous humor flow and intraocular pressure under uncertainty: towards individualized glaucoma management. J Model Ophthalmol. 2016;2:29–39.
Zhao YB, Chen B, Li D. Optimization of surgical protocol for laser iridotomy based the numerical simulation of aqueous flow. Math Biosci Eng. 2019;16(6):7405–20. https://doi.org/10.3934/mbe.2019370.
Nunez R, Harris A, Ibrahim O, et al. Artificial intelligence to aid glaucoma diagnosis and monitoring: state of the art and new directions. Photonics. 2022;9(11):810. https://doi.org/10.3390/photonics9110810.
Article PubMed PubMed Central Google Scholar
Rodionova O, Kurysheva N, Sharova G, Pomerantsev A. Expanding the DD-SIMCA concept: a case study of precision medicine. Anal Chim Acta. 2023;1250. https://doi.org/10.1016/j.aca.2023.340958.
Zou D, Guidoboni G, Keller J, Wikle C, Robinson EL, Rai R, Lin M, Nunez R, Verticchio A, Siesky BA, et al. Vascular physiology-informed machine learning to identify similar subgroups of glaucoma patients across studies: Indianapolis Glaucoma Progression Study, Thessaloniki Eye Study, and Singapore Epidemiology of Eye Disease Study. Investig Ophthalmol Vis Sci. 2022;63:2023-A0464.
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLoS One. 2017;12(5):e0177726. https://doi.org/10.1371/journal.pone.0177726.
Article CAS PubMed PubMed Central Google Scholar
Rahimy E. Deep learning applications in ophthalmology. Curr Opin Ophthalmol. 2018;29(3):254–60. https://doi.org/10.1097/ICU.0000000000000470.
Zhang Y, Zhang Q, Li L, et al. Establishment and comparison of algorithms for detection of primary angle closure suspect based on static and dynamic anterior segment parameters. Transl Vis Sci Technol. 2020;9(5):16. https://doi.org/10.1167/tvst.9.5.16.
Comments (0)