Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873:188314. https://doi.org/10.1016/j.bbcan.2019.188314.
Article CAS PubMed Google Scholar
Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.03.003.
Lebossé F, Zoulim F. Hepatitis B vaccine and liver cancer. Bull Cancer. 2021;108:90–101. https://doi.org/10.1016/j.bulcan.2020.10.014.
Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–313. https://doi.org/10.1038/s41575-020-00395-0.
Article CAS PubMed Google Scholar
Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020;72:342–52. https://doi.org/10.1016/j.jhep.2019.09.010.
Article CAS PubMed Google Scholar
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther. 2023;8:32. https://doi.org/10.1038/s41392-022-01300-8.
Article CAS PubMed PubMed Central Google Scholar
Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567:257–61. https://doi.org/10.1038/s41586-019-0987-8.
Article CAS PubMed Google Scholar
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022;86:101097. https://doi.org/10.1016/j.mam.2022.101097.
Article CAS PubMed PubMed Central Google Scholar
Harrington L, Fletcher JM, Heermann T, Woolfson DN, Schwille P. De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nat Commun. 2021;12:1472. https://doi.org/10.1038/s41467-021-21622-5.
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Li S, Wang Y, Zhao Y, Li Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther. 2022;7:329. https://doi.org/10.1038/s41392-022-01168-8.
Article CAS PubMed PubMed Central Google Scholar
Dong Y, Hu H, Zhang X, Zhang Y, Sun X, Wang H, et al. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct Target Ther. 2023;8:95. https://doi.org/10.1038/s41392-022-01302-6.
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Tian S, Guo Q, Bao K, Yu G, Wang X, et al. A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Mol Cell. 2022;82:2571-2587.e9. https://doi.org/10.1016/j.molcel.2022.04.031.
Article CAS PubMed Google Scholar
Wu W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell. 2020;182:855-871.e23. https://doi.org/10.1016/j.cell.2020.07.018.
Article CAS PubMed Google Scholar
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J. 2021;12:449–75. https://doi.org/10.1007/s13167-021-00265-y.
Article PubMed PubMed Central Google Scholar
Wang Y, Cheng T, Lu M, Mu Y, Li B, Li X, et al. TMT-based quantitative proteomics revealed follicle-stimulating hormone (FSH)-related molecular characterizations for potentially prognostic assessment and personalized treatment of FSH-positive non-functional pituitary adenomas. EPMA J. 2019;10:395–414. https://doi.org/10.1007/s13167-019-00187-w.
Article CAS PubMed PubMed Central Google Scholar
Liu D, Li J, Li N, Lu M, Wen S, Zhan X. Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J. 2020;11:419–67. https://doi.org/10.1007/s13167-020-00215-0.
Article CAS PubMed PubMed Central Google Scholar
Li N, Zhan X. Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine. EPMA J. 2021;12:605–27. https://doi.org/10.1007/s13167-021-00256-z.
Article PubMed PubMed Central Google Scholar
Yang WS, Zeng XF, Liu ZN, Zhao QH, Tan YT, Gao J, et al. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr. 2020;124:330–40. https://doi.org/10.1017/s0007114520001208.
Article CAS PubMed Google Scholar
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612:141–7. https://doi.org/10.1038/s41586-022-05400-x.
Article CAS PubMed Google Scholar
Zhao MX, Chen Q, Li F, Fu S, Huang B, Zhao Y. Protein phosphorylation database and prediction tools. Brief Bioinform. 2023;24. https://doi.org/10.1093/bib/bbad090.
Ng CKY, Dazert E, Boldanova T, Coto-Llerena M, Nuciforo S, Ercan C, et al. Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun. 2022;13:2436. https://doi.org/10.1038/s41467-022-29960-8.
Article CAS PubMed PubMed Central Google Scholar
Qin L, Cao X, Kaneko T, Voss C, Liu X, Wang G, et al. Dynamic interplay of two molecular switches enabled by the MEK1/2-ERK1/2 and IL-6-STAT3 signaling axes controls epithelial cell migration in response to growth factors. J Biol Chem. 2021;297:101161. https://doi.org/10.1016/j.jbc.2021.101161.
Article CAS PubMed PubMed Central Google Scholar
Xia Y, Liu X, Liu B, Zhang X, Tian G. Enhanced antitumor activity of combined megestrol acetate and arsenic trioxide treatment in liver cancer cells. Exp Ther Med. 2018;15:4047–55. https://doi.org/10.3892/etm.2018.5905.
Article CAS PubMed PubMed Central Google Scholar
Hall EH, Balsbaugh JL, Rose KL, Shabanowitz J, Hunt DF, Brautigan DL. Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK. Mol Cell Proteomics. 2010;9:2853–63. https://doi.org/10.1074/mcp.M110.003665.
Article CAS PubMed PubMed Central Google Scholar
Yuan X, Zhang W, He Y, Yuan J, Song D, Chen H, et al. Proteomic analysis of cisplatin- and oxaliplatin-induced phosphorylation in proteins bound to Pt-DNA adducts. Metallomics. 2020;12:1834–40. https://doi.org/10.1039/d0mt00194e.
Article CAS PubMed Google Scholar
Meng SS, Gu HW, Zhang T, Li YS, Tang HB. Gradual deterioration of fatty liver disease to liver cancer via inhibition of AMPK signaling pathways involved in energy-dependent disorders, cellular aging, and chronic inflammation. Front Oncol. 2023;13:1099624. https://doi.org/10.3389/fonc.2023.1099624.
Article PubMed PubMed Central Google Scholar
Kaihara T, Kawamata H, Imura J, Fujii S, Kitajima K, Omotehara F, et al. Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer: possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1. Cancer Sci. 2003;94:166–72. https://doi.org/10.1111/j.1349-7006.2003.tb01414.x.
Article CAS PubMed Google Scholar
French SW, Mayer RJ, Bardag-Gorce F, Ingelman-Sundberg M, Rouach H, Neve E, et al. The ubiquitin-proteasome 26s pathway in liver cell protein turnover: effect of ethanol and drugs. Alcohol Clin Exp Res. 2001;25:225s–9s. https://doi.org/10.1097/00000374-200105051-00036.
Article CAS PubMed Google Scholar
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer. 2022;3:536–46. https://doi.org/10.1038/s43018-022-00384-z.
Article CAS PubMed PubMed Central Google Scholar
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat. 2020;53:100728. https://doi.org/10.1016/j.drup.2020.100728.
Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 2022;75:847–65. https://doi.org/10.1002/hep.32195.
Article CAS PubMed Google Scholar
Ye Z, Bing A, Zhao S, Yi S, Zhan X. Comprehensive analysis of spliceosome genes and their mutants across 27 cancer types in 9070 patients: clinically relevant outcomes in the context of 3P medicine. EPMA J. 2022;13:335–50. https://doi.org/10.1007/s13167-022-00279-0.
Comments (0)