Correlation Between Alkaline Phosphatase Expression and Sox2, Oct4, and Nanog Genes in Spermatogonial and ES-Like Cells

Štefková K, Procházková J, Pacherník J. Alkaline phosphatase in stem cells, vol. 2015. Stem cells international; 2015.

Google Scholar 

McComb RB, Bowers GN Jr, Posen S. Alkaline phosphatase. Springer Science & Business Media; 2013.

Google Scholar 

Sato M, et al. Tissue-nonspecific alkaline phosphatase, a possible mediator of cell maturation: towards a new paradigm. Cells. 2021;10(12):3338.

Article  CAS  Google Scholar 

McGowan SL, et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13(223-27):1984–2000.

CAS  Google Scholar 

Kermer V, et al. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett. 2010;485(3):208–11.

Article  CAS  Google Scholar 

Goldberg RF, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A. 2008;105(9):3551–6.

Article  CAS  Google Scholar 

Blomberg LA, Schreier LL, Talbot NC. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Molecular Reprod and Dev: Incorporating Gamete Res. 2008;75(3):450–63.

Article  CAS  Google Scholar 

Yamaguchi S, et al. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005;5(5):639–46.

Article  CAS  Google Scholar 

Zhong C, et al. Pou5f1 and nanog are reliable germ cell-specific genes in gonad of a protogynous hermaphroditic fish, orange-spotted grouper (Epinephelus coioides). Genes. 2021;13(1):79.

Article  Google Scholar 

Zheng Y, et al. Ectopic POU5F1 in the male germ lineage disrupts differentiation and spermatogenesis in mice. Reproduction (Cambridge, England). 2016;152(4):363.

Article  CAS  Google Scholar 

Niknejad P, Azizi H, Sojoudi K. POU5F1 protein and gene expression analysis in neonate and adult mouse testicular germ cells by immunohistochemistry and immunocytochemistry. Cellular Reprog. 2021;23(6):349–58.

Article  CAS  Google Scholar 

Liu R, et al. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation. Stem Cell Rev Rep. 2015;11(1):11–23.

Article  Google Scholar 

Malik V, et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nat comm. 2019;10(1):1–16.

Article  Google Scholar 

Oatley JM. Recent advances for spermatogonial stem cell transplantation in livestock. Reproduction, fertility and Dev. 2018;30(1):44–9.

Article  Google Scholar 

Kurimoto K, Saitou M. Germ cell reprogramming. Curr Top Dev Biol. 2019;135:91–125.

Article  CAS  Google Scholar 

Karagiannis P, et al. Induced pluripotent stem cells and their use in human models of disease and development. Phys rev. 2019;99(1):79–114.

CAS  Google Scholar 

Driessens G, Blanpain C. Long live Sox2: Sox2 lasts a lifetime. Cell stem cell. 2011;9(4):283–4.

Article  CAS  Google Scholar 

Xiao W, et al. SOX2 promotes brain metastasis of breast cancer by upregulating the expression of FSCN1 and HBEGF. Mol Ther - Oncolytics. 2020;17:118–29.

Article  CAS  Google Scholar 

Azizi H, Niazi Tabar A, Skutella T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reprod health. 2021;18(1):1–9.

Article  Google Scholar 

Masoudi M, et al. Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells. Biologia Futura. 2022;73(4):503–12.

Article  CAS  Google Scholar 

Amirian M, et al. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Scientific Rep. 2022;12(1):17259.

Article  CAS  Google Scholar 

Hashemi Karoii D, Azizi H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J Recept Signal Transduct. 2022;42(5):512–20.

Article  CAS  Google Scholar 

Reza E, Azizi H. Comparing the expression levels of alkaline phosphatase, Gfra1, Lin28, and Sall4 Genes in embryonic stem cells, spermatogonial stem cells, and embryonic stem-like cells in mice. J Maz Univ Med Sci. 2022;32(210):13–25.

Google Scholar 

Reza E, Azizi H, Ahmadi AA. Evaluation and comparison of the expression levels of the ZBTB16 (Plzf) and ZFP genes and alkaline phosphatase in three cell populations: mouse spermatogonial stem cells, embryonic stem-like cells (Es-like), and embryonic stem cells. J Ilam Univ Med Sci. 2023;31(1):1.

Google Scholar 

Tesar PJ, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nat. 2007;448(7150):196–9.

Article  CAS  Google Scholar 

Narisawa S, et al. Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol. 2003;23(21):7525–30.

Article  CAS  Google Scholar 

Singh U, et al. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev Rep. 2012;8(3):1021–9.

Article  Google Scholar 

Tan H, Tee WW. Committing the primordial germ cell: an updated molecular perspective. Wiley Interdiscip Rev: Syst Biol Med. 2019;11(1):e1436.

Google Scholar 

González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12(4):231–42.

Article  Google Scholar 

Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. 2009;7(1):07002.

Article  Google Scholar 

He S, et al. Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev. 2006;73(12):1512–22.

Article  CAS  Google Scholar 

Carlin R, et al. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol. 2006;4(1):1–13.

Article  Google Scholar 

Goel S, et al. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction. 2008;135(6):785.

Article  CAS  Google Scholar 

Zhang L, et al. Successful co-immunoprecipitation of Oct4 and Nanog using cross-linking. Biochem Biophys Res Commun. 2007;361(3):611–4.

Article  CAS  Google Scholar 

Sánchez-Sánchez AV, et al. Nanog regulates primordial germ cell migration through Cxcr4b. Stem Cells. 2010;28(9):1457–64.

Article  Google Scholar 

Yu M, et al. Maternal inheritance of Nanog ortholog in blunt-snout bream. J Exp Zool B Mol Dev Evol. 2017;328(8):749–59.

Article  CAS  Google Scholar 

Liu M, de Mitcheson YS. Gonad development during sexual differentiation in hatchery-produced orange-spotted grouper (Epinephelus coioides) and humpback grouper (Cromileptes altivelis)(Pisces: Serranidae, Epinephelinae). Aquaculture. 2009;287(1-2):191–202.

Article  Google Scholar 

Gao J, et al. Identification and characterization of a Nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene. 2013;531(2):411–21.

Article  CAS  Google Scholar 

Azizi H, et al. Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem cells int. 2016;2016:8216312.

Article  Google Scholar 

Hochedlinger K, et al. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121(3):465–77.

Article  CAS  Google Scholar 

Nowak-Imialek M, et al. Oct4-enhanced green fluorescent protein transgenic pigs: a new large animal model for reprogramming studies. Stem Cells and Dev. 2011;20(9):1563–75.

Article  CAS  Google Scholar 

Campolo F, et al. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem cells. 2013;31(7):1408–21.

Article  CAS  Google Scholar 

Conrad S, et al. Differential gene expression profiling of enriched human spermatogonia after short-and long-term culture. BioMed res int. 2014;2014:138350.

Article  Google Scholar 

Muhr J. Genomic occupancy in various cellular contexts and potential pioneer factor function of SOX2. In: Sox2. Elsevier; 2016. p. 145–59.

Chapter  Google Scholar 

Yu Z, et al. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biology of reprod. 2003;69(1):37–47.

Article  CAS  Google Scholar 

Cannarella R, et al. Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci. 2020;21(5):1728.

Article  CAS  Google Scholar 

Comments (0)

No login
gif