Štefková K, Procházková J, Pacherník J. Alkaline phosphatase in stem cells, vol. 2015. Stem cells international; 2015.
McComb RB, Bowers GN Jr, Posen S. Alkaline phosphatase. Springer Science & Business Media; 2013.
Sato M, et al. Tissue-nonspecific alkaline phosphatase, a possible mediator of cell maturation: towards a new paradigm. Cells. 2021;10(12):3338.
McGowan SL, et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13(223-27):1984–2000.
Kermer V, et al. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett. 2010;485(3):208–11.
Goldberg RF, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A. 2008;105(9):3551–6.
Blomberg LA, Schreier LL, Talbot NC. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Molecular Reprod and Dev: Incorporating Gamete Res. 2008;75(3):450–63.
Yamaguchi S, et al. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005;5(5):639–46.
Zhong C, et al. Pou5f1 and nanog are reliable germ cell-specific genes in gonad of a protogynous hermaphroditic fish, orange-spotted grouper (Epinephelus coioides). Genes. 2021;13(1):79.
Zheng Y, et al. Ectopic POU5F1 in the male germ lineage disrupts differentiation and spermatogenesis in mice. Reproduction (Cambridge, England). 2016;152(4):363.
Niknejad P, Azizi H, Sojoudi K. POU5F1 protein and gene expression analysis in neonate and adult mouse testicular germ cells by immunohistochemistry and immunocytochemistry. Cellular Reprog. 2021;23(6):349–58.
Liu R, et al. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation. Stem Cell Rev Rep. 2015;11(1):11–23.
Malik V, et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nat comm. 2019;10(1):1–16.
Oatley JM. Recent advances for spermatogonial stem cell transplantation in livestock. Reproduction, fertility and Dev. 2018;30(1):44–9.
Kurimoto K, Saitou M. Germ cell reprogramming. Curr Top Dev Biol. 2019;135:91–125.
Karagiannis P, et al. Induced pluripotent stem cells and their use in human models of disease and development. Phys rev. 2019;99(1):79–114.
Driessens G, Blanpain C. Long live Sox2: Sox2 lasts a lifetime. Cell stem cell. 2011;9(4):283–4.
Xiao W, et al. SOX2 promotes brain metastasis of breast cancer by upregulating the expression of FSCN1 and HBEGF. Mol Ther - Oncolytics. 2020;17:118–29.
Azizi H, Niazi Tabar A, Skutella T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reprod health. 2021;18(1):1–9.
Masoudi M, et al. Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells. Biologia Futura. 2022;73(4):503–12.
Amirian M, et al. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Scientific Rep. 2022;12(1):17259.
Hashemi Karoii D, Azizi H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J Recept Signal Transduct. 2022;42(5):512–20.
Reza E, Azizi H. Comparing the expression levels of alkaline phosphatase, Gfra1, Lin28, and Sall4 Genes in embryonic stem cells, spermatogonial stem cells, and embryonic stem-like cells in mice. J Maz Univ Med Sci. 2022;32(210):13–25.
Reza E, Azizi H, Ahmadi AA. Evaluation and comparison of the expression levels of the ZBTB16 (Plzf) and ZFP genes and alkaline phosphatase in three cell populations: mouse spermatogonial stem cells, embryonic stem-like cells (Es-like), and embryonic stem cells. J Ilam Univ Med Sci. 2023;31(1):1.
Tesar PJ, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nat. 2007;448(7150):196–9.
Narisawa S, et al. Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol. 2003;23(21):7525–30.
Singh U, et al. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev Rep. 2012;8(3):1021–9.
Tan H, Tee WW. Committing the primordial germ cell: an updated molecular perspective. Wiley Interdiscip Rev: Syst Biol Med. 2019;11(1):e1436.
González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12(4):231–42.
Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. 2009;7(1):07002.
He S, et al. Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev. 2006;73(12):1512–22.
Carlin R, et al. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol. 2006;4(1):1–13.
Goel S, et al. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction. 2008;135(6):785.
Zhang L, et al. Successful co-immunoprecipitation of Oct4 and Nanog using cross-linking. Biochem Biophys Res Commun. 2007;361(3):611–4.
Sánchez-Sánchez AV, et al. Nanog regulates primordial germ cell migration through Cxcr4b. Stem Cells. 2010;28(9):1457–64.
Yu M, et al. Maternal inheritance of Nanog ortholog in blunt-snout bream. J Exp Zool B Mol Dev Evol. 2017;328(8):749–59.
Liu M, de Mitcheson YS. Gonad development during sexual differentiation in hatchery-produced orange-spotted grouper (Epinephelus coioides) and humpback grouper (Cromileptes altivelis)(Pisces: Serranidae, Epinephelinae). Aquaculture. 2009;287(1-2):191–202.
Gao J, et al. Identification and characterization of a Nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene. 2013;531(2):411–21.
Azizi H, et al. Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem cells int. 2016;2016:8216312.
Hochedlinger K, et al. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121(3):465–77.
Nowak-Imialek M, et al. Oct4-enhanced green fluorescent protein transgenic pigs: a new large animal model for reprogramming studies. Stem Cells and Dev. 2011;20(9):1563–75.
Campolo F, et al. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem cells. 2013;31(7):1408–21.
Conrad S, et al. Differential gene expression profiling of enriched human spermatogonia after short-and long-term culture. BioMed res int. 2014;2014:138350.
Muhr J. Genomic occupancy in various cellular contexts and potential pioneer factor function of SOX2. In: Sox2. Elsevier; 2016. p. 145–59.
Yu Z, et al. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biology of reprod. 2003;69(1):37–47.
Cannarella R, et al. Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci. 2020;21(5):1728.
Comments (0)