Ubiquitinomics revealed disease- and stage-specific patterns relevant for the 3PM approach in human sigmoid colon cancers

Ladabaum U, Dominitz JA, Kahi C, Schoen RE. Strategies for colorectal cancer screening. Gastroenterology. 2020;158:418–32. https://doi.org/10.1053/j.gastro.2019.06.043.

Article  CAS  PubMed  Google Scholar 

Kobayashi R, Ogura A, Kawai S, Takagi K, Kawai K, Maeda T, et al. Laparoscopic surgery for sigmoid colon cancer with complicated communication between the superior and inferior mesenteric arteries. Asian J Endosc Surg. 2021;14:267–70. https://doi.org/10.1111/ases.12844.

Article  PubMed  Google Scholar 

Hsu YL, Lin CC, Jiang JK, Lin HH, Lan YT, Wang HS, et al. Clinicopathological and molecular differences in colorectal cancer according to location. Int J Biol Markers. 2019;34:47–53. https://doi.org/10.1177/1724600818807164.

Article  CAS  PubMed  Google Scholar 

de Boer NL, Rovers K, Burger JWA, Madsen EVE, Brandt-Kerkhof ARM, Kok NFM, et al. A population-based study on the prognostic impact of primary tumor sidedness in patients with peritoneal metastases from colon cancer. Cancer Med. 2020;9:5851–9. https://doi.org/10.1002/cam4.3243.

Article  PubMed  PubMed Central  Google Scholar 

Vogelsang RP, Gögenur M, Dencker D, Bjørn Bennedsen AL, Levin Pedersen D, Gögenur I. Routine CT evaluation of central vascular ligation in patients undergoing complete mesocolic excision for sigmoid colon cancer. Colorectal Dis. 2021;23:2030–40. https://doi.org/10.1111/codi.15723.

Article  PubMed  Google Scholar 

Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: regulators of neurodegenerative proteinopathies. Ageing Res Rev. 2021;68:101336. https://doi.org/10.1016/j.arr.2021.101336.

Article  CAS  PubMed  Google Scholar 

Lu M, Chen W, Zhuang W, Zhan X. Label-free quantitative identification of abnormally ubiquitinated proteins as useful biomarkers for human lung squamous cell carcinomas. Epma j. 2020;11:73–94. https://doi.org/10.1007/s13167-019-00197-8.

Article  PubMed  PubMed Central  Google Scholar 

Gulei D, Drula R, Ghiaur G, Buzoianu AD, Kravtsova-Ivantsiv Y, Tomuleasa C, et al. The tumor suppressor functions of ubiquitin ligase KPC1: from cell cycle control to NF-κB regulator. Cancer Res. 2023;83(11):1762–7. https://doi.org/10.1158/0008-5472.Can-22-3739.

Article  PubMed  Google Scholar 

Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, et al. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun. 2022;13:2736. https://doi.org/10.1038/s41467-022-30376-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stekel Z, Sheng Y, Zhang W. The multifaceted role of the ubiquitin proteasome system in pathogenesis and diseases. Biomolecules. 2022;12:925. https://doi.org/10.3390/biom12070925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 2020;43:1144–61. https://doi.org/10.1007/s12272-020-01281-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh SR, Meyer-Jens M, Alizoti E, Bacon WC, Davis G, Osinska H, et al. A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy. 2021;17:3124–39. https://doi.org/10.1080/15548627.2020.1856493.

Article  CAS  PubMed  Google Scholar 

Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605. https://doi.org/10.1038/s41418-020-00708-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu Y, Xu L, Xu J, Bao Z, Tian W, Ye Y, et al. Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene. 2022;41:2597–608. https://doi.org/10.1038/s41388-022-02275-0.

Article  CAS  PubMed  Google Scholar 

Zhu G, Herlyn M, Yang X. TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nat Cell Biol. 2021;23:978–91. https://doi.org/10.1038/s41556-021-00732-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kodroń A, Mussulini BH, Pilecka I, Chacińska A. The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res. 2021;163:105248. https://doi.org/10.1016/j.phrs.2020.105248.

Article  CAS  PubMed  Google Scholar 

Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol. 2021;11:200390. https://doi.org/10.1098/rsob.200390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. Epma j. 2021;12:449–75. https://doi.org/10.1007/s13167-021-00265-y.

Article  PubMed  PubMed Central  Google Scholar 

Liu D, Li J, Li N, Lu M, Wen S, Zhan X. Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J. 2020;11:419–67. https://doi.org/10.1007/s13167-020-00215-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. https://doi.org/10.1007/s13167-018-0128-8.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, He G, Lv Y, Liu Y, Niu Z, Feng Q, et al. HERC3 regulates epithelial-mesenchymal transition by directly ubiquitination degradation EIF5A2 and inhibits metastasis of colorectal cancer. Cell Death Dis. 2022;13:74. https://doi.org/10.1038/s41419-022-04511-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang L, Ford-Roshon D, Russo M, O'Brien C, Xiong X, Gurjao C, et al. RNF43 G659fs is an oncogenic colorectal cancer mutation and sensitizes tumor cells to PI3K/mTOR inhibition. Nat Commun. 2022;13:3181. https://doi.org/10.1038/s41467-022-30794-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal E, Goldman AR, Tang HY, Kossenkov AV, Ghosh JC, Languino LR, et al. A cancer ubiquitome landscape identifies metabolic reprogramming as target of Parkin tumor suppression. Sci Adv. 2021;7:eabg7287. https://doi.org/10.1126/sciadv.abg7287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Chen C, Yu T, Chen T. Proteomic analysis of protein ubiquitination events in human primary and metastatic colon adenocarcinoma tissues. Front Oncol. 2020;10:1684. https://doi.org/10.3389/fonc.2020.01684.

Article  PubMed  PubMed Central  Google Scholar 

Wang T, Jin C, Yang P, Chen Z, Ji J, Sun Q, et al. UBE2J1 inhibits colorectal cancer progression by promoting ubiquitination and degradation of RPS3. Oncogene. 2023;42:651–64. https://doi.org/10.1038/s41388-022-02581-7.

Article  CAS  PubMed  Google Scholar 

Yang J, Zhang W, Evans PM, Chen X, He X, Liu C. Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem. 2006;281:17751–7. https://doi.org/10.1074/jbc.M600831200.

Article  CAS  PubMed  Google Scholar 

Zhou R, Chen J, Xu Y, Ye Y, Zhong G, Chen T, et al. PRPF19 facilitates colorectal cancer liver metastasis through activation of the Src-YAP1 pathway via K63-linked ubiquitination of MYL9. Cell Death Dis. 2023;14:258. https://doi.org/10.1038/s41419-023-05776-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Zhou Z, Xiang L, Lv M, Ni T, Deng J, et al. CHIP-mediated ubiquitination of Galectin-1 predicts colorectal cancer prognosis. Int J Biol Sci. 2020;16:719–29. https://doi.org/10.7150/ijbs.41125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duijster JW, Hansen JV, Franz E, Neefjes JJC, Frisch M, Mughini-Gras L, et al. Association between Salmonella infection and colon cancer: a nationwide registry-based cohort study. Epidemiol Infect. 2021;149:e56. https://doi.org/10.1017/s0950268821000285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes. 2023;15:2185028. https://doi.org/10.1080/19490976.2023.2185028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu K, Yang X, Zeng M, Yuan Y, Sun J, He P, et al. The role of fecal Fusobacterium nucleatum and pks(+) Escherichia coli as early diagnostic markers of colorectal cancer. Dis Markers. 2021;2021:1171239. https://doi.org/10.1155/2021/1171239.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053–60. https://doi.org/10.3748/wjg.v28.i30.4053.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang XM, Yang C, Zhao Y, Xu ZG, Yang W, Wang P, et al. The deubiquitinase USP25 supports colonic inflammation and bacterial infection and promotes colorectal cancer. Nat Cancer. 2020;1:811–25.

Comments (0)

No login
gif