P.K. Keszycka, M. Szkop, D. Gajewska. Overall Content of Salicylic Acid and Salicylates in Food Available on the European Market. J. Agric. Food Chem. 65 (2017) 11085-11091. https://doi.org/-10.1021/acs.jafc.7b04313.
W. Detpisuttitham, C. Phanthong, S. Ngamchana, P. Rijiravanich, W. Surareungchai. Electrochemical Detection of Salicylic Acid in Pickled Fruit/Vegetable and Juice. Journal of Analysis and Testing 4 (2020) 291-297. https://doi.org/10.1007/s41664-020-00127-y.
N. Gissawong, S. Srijaranai, S. Sansuk. A simple capture-release strategy based on an instantly formed mixed metal hydroxide sorbent for determination of salicylic acid in cosmetics. Sustainable Chemistry and Pharmacy 13 (2019). https://doi.org/10.1016/j.scp.2019.100154.
T. Alizadeh, S. Nayeri. Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. Journal of Solid State Electrochemistry 22 (2018) 2039-2048. https://doi.org/¬10.1007/s10008-018-3907-1.
M. Ramos Payan, M.A. Bello Lopez, R. Fernandez-Torres, J.L. Perez Bernal, M. Callejon Mochon. HPLC determination of ibuprofen, diclofenac and salicylic acid using hollow fiber-based liquid phase microextraction (HF-LPME). Anal Chim Acta 653 (2009) 184-190. https://doi.org/10.1016/j.aca.-2009.09.018.
U. Saha, K. Baksi. Spectrophotometric determination of salicylic acid in pharmaceutical formulations using copper(II) acetate as a colour developer. Analyst 110 (1985) 739-741. https://doi.org/-10.1039/an9851000739.
M.M. Karim, H.S. Lee, Y.S. Kim, H.S. Bae, S.H. Lee. Analysis of salicylic acid based on the fluorescence enhancement of the As(III)-salicylic acid system. Anal. Chim. Acta 576 (2006) 136-139. https://doi.org/¬10.1016/j.aca.2006.02.004.
M. Reza Ganjali. Determination of Salicylic Acid by Differential Pulse Voltammetry Using ZnO/Al2O3 Nanocomposite Modified Graphite Screen Printed Electrode. International Journal of Electrochemical Science (2017) 9972-9982. https://doi.org/10.20964/2017.11.49.
H.-Y. Liu, J.-J. Wen, Z.-H. Huang, H. Ma, H.-X. Xu, Y.-B. Qiu, W.-J. Zhao, C.-C. Gu. Prussian Blue Analogue of Copper-Cobalt Decorated with Multi-Walled Carbon Nanotubes Based Electrochemical Sensor for Sensitive Determination of Nitrite in Food Samples. Chinese Journal of Analytical Chemistry 47 (2019) e19066-e19072. https://doi.org/10.1016/s1872-2040(19)61168-0.
F. Moreira, T. de Andrade Maranhão, A. Spinelli. Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry. Journal of Solid State Electrochemistry 22 (2017) 1303-1313. https://doi.org/10.1007/s10008-017-3678-0.
T.M. Freire, L.M.U. Dutra, D.C. Queiroz, N. Ricardo, K. Barreto, J.C. Denardin, F.R. Wurm, C.P. Sousa, A.N. Correia, P. de Lima-Neto, P.B.A. Fechine. Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydr. Polym. 151 (2016) 760-769. https://doi.org/10.1016/j.carbpol.2016.05.095.
F. Beigmoradi, H. Beitollahi. Fe3O4/GO nanocomposite modified glassy carbon electrode as a novel voltammetric sensor for determination of bisphenol A. Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1482
H. Tashakkorian, B. Aflatoonian, P.M. Jahani, M.R. Aflatoonian. Electrochemical sensor for determination of hydroxylamine using functionalized Fe3O4 nanoparticles and graphene oxide modified screen-printed electrode. Journal of Electrochemical Science and Engineering (2021). https://doi.org/10.5599/jese.1145
M. Sedki, G. Zhao, S. Ma, D. Jassby, A. Mulchandani. Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe(3)O(4)-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). Sensors (Basel) 21 (2021). https://doi.org/10.3390/s21030883.
S. Qu, J. Wang, J. Kong, P. Yang, G. Chen. Magnetic loading of carbon nanotube/nano-Fe(3)O(4) composite for electrochemical sensing. Talanta 71 (2007) 1096-1102. https://doi.org/10.1016/-j.talanta.¬2006.¬06.003.
M. Tabrizi, S.-A. Shahidi, F. Chekin, A. Ghorbani-HasanSaraei, S.N. Raeisi. Reduce Graphene Oxide/Fe3O4 Nanocomposite Biosynthesized by Sour Lemon Peel; Using as Electro-catalyst for Fabrication of Vanillin Electrochemical Sensor in Food Products Analysis and Anticancer Activity. Topics in Catalysis 65 (2022) 726-732. https://doi.org/10.1007/s11244-021-01541-x.
I.A. Mattioli, P. Cervini, E.T.G. Cavalheiro. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Mikrochim Acta 187 (2020) 318. https://doi.org/10.1007/s00604-020-04259-x.
P. Sanchayanukun, S. Muncharoen. Chitosan coated magnetite nanoparticle as a working electrode for determination of Cr(VI) using square wave adsorptive cathodic stripping voltammetry. Talanta 217 (2020) 121027. https://doi.org/10.1016/j.talanta.2020.121027.
S. Dehdashtian, M.B. Gholivand, M. Shamsipur, S. Kariminia. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier. Mater. Sci. Eng. C Mater. Biol. Appl. 58 (2016) 53-59. https://doi.org/10.1016/j.msec.2015.07.049.
A. Garcia-Miranda Ferrari, C.W. Foster, P.J. Kelly, D.A.C. Brownson, C.E. Banks. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors (Basel) 8 (2018). https://doi.org/10.3390/bios8020053.
Y.-H. Wang, C.-M. Yu, Z.-Q. Pan, Y.-F. Wang, J.-W. Guo, H.-Y. Gu. A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Microchimica Acta 180 (2013) 659-667. https://doi.org/10.1007/s00604-013-0977-8.
H. Derikvand, A. Azadbakht. An Impedimetric Sensor Comprising Magnetic Nanoparticles–Graphene Oxide and Carbon Nanotube for the Electrocatalytic Oxidation of Salicylic Acid. Journal of Inorganic and Organometallic Polymers and Materials 27 (2017) 901-911. https://doi.org/10.1007/s10904-017-0535-7.
D. Asangil, I. Hudai Tasdemir, E. Kilic. Adsorptive stripping voltammetric methods for determination of aripiprazole. J Pharm Anal 2 (2012) 193-199. https://doi.org/10.1016/j.jpha.2012.01.009.
S. Wyantuti, Y.W. Hartati, C. Panatarani, R. Tjokronegoro. Cyclic Voltammetric Study of Chromium (VI) and Chromium (III) on the Gold Nanoparticles-Modified Glassy Carbon Electrode. Procedia Chemistry 17 (2015) 170-176. https://doi.org/10.1016/j.proche.2015.12.109.
R. Kort, A. Nocker, A. de Kat Angelino-Bart, S. van Veen, H. Verheij, F. Schuren, R. Montijn. Real-time detection of viable microorganisms by intracellular phototautomerism. BMC Biotechnol 10 (2010) 45. https://doi.org/10.1186/1472-6750-10-45.
D. Eskiköy Bayraktepe, Z. Yazan. Application of Single‐use Electrode Based on Nano‐clay and MWCNT for Simultaneous Determination of Acetaminophen, Ascorbic Acid and Acetylsalicylic Acid in Pharmaceutical Dosage. Electroanalysis 32 (2020) 1263-1272. https://doi.org/10.1002/elan.2019-00601.
AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. (2019).
S.M. Ghoreishi, F.Z. Kashani, A. Khoobi, M. Enhessari. Fabrication of a nickel titanate nanoceramic modified electrode for electrochemical studies and detection of salicylic acid. Journal of Molecular Liquids 211 (2015) 970-980. https://doi.org/10.1016/j.molliq.2015.08.035.
J. Kang, H. Zhang, Z. Wang, G. Wu, X. Lu. A Novel Amperometric Sensor for Salicylic Acid Based on Molecularly Imprinted Polymer-Modified Electrodes. Polymer-Plastics Technology and Engineering 48 (2009) 639-645. https://doi.org/10.1080/03602550902824499.
S. Rawlinson, A. McLister, P. Kanyong, J. Davis. Rapid determination of salicylic acid at screen printed electrodes. Microchemical Journal 137 (2018) 71-77. https://doi.org/10.1016/j.microc.2017.09.019.
A.A. Torriero, J.M. Luco, L. Sereno, J. Raba. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta 62 (2004) 247-254. https://doi.org/-10.1016/j.talanta.2003.07.005.
Comments (0)