Adeniran I, McPate MJ, Witchel HJ et al (2011) Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome. PLoS Comput Biol 7:e1002313. https://doi.org/10.1371/journal.pcbi.1002313
Article CAS PubMed PubMed Central Google Scholar
Amirian A, Dalili SM, Zafari Z et al (2018) Novel frameshift mutation in the KCNQ1 gene responsible for Jervell and Lange-Nielsen syndrome. Iran J Basic Med Sci 21:108–111. https://doi.org/10.22038/IJBMS.2017.23207.5908
Article PubMed PubMed Central Google Scholar
Barhanin J, Lesage F, Guillemare E et al (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80. https://doi.org/10.1038/384078a0
Article CAS PubMed Google Scholar
Cooper DN, Stenson PD, Chuzhanova NA (2006) The human gene mutation database (HGMD) and its exploitation in the study of mutational mechanisms. Curr Protoc Bioinforma. https://doi.org/10.1002/0471250953.bi0113s12
Gima K, Rudy Y (2002) Ionic current basis of electrocardiographic waveforms: a model study. Circ Res 90:889–896. https://doi.org/10.1161/01.RES.0000016960.61087.86
Article CAS PubMed PubMed Central Google Scholar
Giudicessi JR, Ackerman MJ (2013) Prevalence and potential genetic determinants of sensorineural deafness in KCNQ1 homozygosity and compound heterozygosity. Circ Cardiovasc Genet 6:193–200. https://doi.org/10.1161/CIRCGENETICS.112.964684
Article CAS PubMed PubMed Central Google Scholar
Golemati S, Nikita KS (eds) (2019). Springer, Singapore
González-Garrido A, Domínguez-Pérez M, Jacobo-Albavera L et al (2021) Compound heterozygous KCNQ1 mutations causing recessive Romano-ward syndrome: functional characterization by mutant co-expression. Front Cardiovasc Med 8:1–11. https://doi.org/10.3389/fcvm.2021.625449
Harrison SM, Riggs ER, Maglott DR et al (2016) Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet. https://doi.org/10.1002/0471142905.hg0816s89
Article PubMed PubMed Central Google Scholar
Jackson CB, Nuoffer J-M, Hahn D et al (2014) Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet 51:170–175. https://doi.org/10.1136/jmedgenet-2013-101932
Article CAS PubMed Google Scholar
Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J 54:59–68. https://doi.org/10.1016/0002-8703(57)90079-0
Article CAS PubMed Google Scholar
Jespersen T, Grunnet M, Olesen S-P (2005) The KCNQ1 potassium channel: from gene to physiological function. Physiology 20:408–416. https://doi.org/10.1152/physiol.00031.2005
Article CAS PubMed Google Scholar
Jongsma HJ, Wilders R (2000) Gap junctions in cardiovascular disease. Circ Res 86:1193–1197. https://doi.org/10.1161/01.RES.86.12.1193
Article CAS PubMed Google Scholar
Kannankeril P, Roden DM, Darbar D (2010) Drug-induced long QT syndrome. Pharmacol Rev 62:760–781. https://doi.org/10.1124/pr.110.003723
Article CAS PubMed PubMed Central Google Scholar
Kirthi Priya P, Reddy MR (2017) Simulation study of the ionic mechanisms underlying Torsade de Pointes in a 2D cardiac tissue. Comput Biol Med 89:293–303. https://doi.org/10.1016/j.compbiomed.2017.08.017
Li B, Mendenhall JL, Kroncke BM et al (2017) Predicting the functional impact of KCNQ1 variants of unknown significance. Circ Cardiovasc Genet. https://doi.org/10.1161/CIRCGENETICS.117.001754
Article PubMed PubMed Central Google Scholar
Malathi R, Reddy MRS (2009) Effect of gap junction conductance and formation of reentry in human ventricle tissue—a computational study, pp. 85–88
Mayourian J, Sobie EA, Costa KD (2018) An introduction to computational modeling of cardiac electrophysiology and arrhythmogenicity. In: Ishikawa Kiyotake (ed) Methods in molecular biology. Humana Press Inc., pp 17–35
Mizusawa Y, Horie M, Wilde AAM (2014) Genetic and clinical advances in congenital long QT syndrome. Circ J 78:2827–2833. https://doi.org/10.1253/circj.cj-14-0905
Article CAS PubMed Google Scholar
Sanguinetti MC, Curran ME, Zou A et al (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83. https://doi.org/10.1038/384080a0
Article CAS PubMed Google Scholar
Satish H, Ramasubba Reddy M (2021) A simulation study on electrical activity of ventricular endocardial tissue due to SCN5A L812Q mutation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico. pp 5543–5546. https://doi.org/10.1109/EMBC46164.2021.9630990
Satish H, Ramasubba Reddy M (2022) An in-silico study on effect of KCNQ1 P535T mutation in cardiac ventricular cells. In: 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia. pp 234–239. https://doi.org/10.1109/IECBES54088.2022.10079281
Schmitt N, Schwarz M, Peretz A et al (2000) A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19:332–340. https://doi.org/10.1093/emboj/19.3.332
Article CAS PubMed PubMed Central Google Scholar
Ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol—Hear Circ Physiol 291:1088–1100. https://doi.org/10.1152/ajpheart.00109.2006
Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol—Hear Circ Physiol 286:1573–1589. https://doi.org/10.1152/ajpheart.00794.2003
Vohra J (2007) The long QT syndrome. Heart Lung Circ 16(Suppl 3):S5-12. https://doi.org/10.1016/j.hlc.2007.05.008
Wu W, Sanguinetti MC (2016) Molecular basis of cardiac delayed rectifier potassium channel function and pharmacology. Card Electrophysiol Clin 8:275–284. https://doi.org/10.1016/j.ccep.2016.01.002
Article PubMed PubMed Central Google Scholar
Yang Y, Xia M, Jin Q et al (2004) Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 75:899–905. https://doi.org/10.1086/425342
Comments (0)