Application of Lateral Flow Biosensors in Rapid Detection of Genetically Modified Products

ISAAA. Global Status of Commercialized Biotech/GM Crops: 2019. ISAAA Brief No. 55.

Google Scholar 

Rozas P, Kessi-Pérez EI, Martínez C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol Res. 2022;55(1):31.

Article  PubMed  PubMed Central  Google Scholar 

Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global regulation of genetically modified crops amid the gene edited crop boom – a review. Front Plant Sci. 2021;12:630396.

Article  PubMed  PubMed Central  Google Scholar 

Liu WX, Meng LX, Liu XR, Liu C, Jin WJ. Establishment of an ELISA method for quantitative detection of PAT/pat in GM crops. Agriculture. 2022;12(9):1400.

Article  CAS  Google Scholar 

Zhang J, Liu ZH, Pu YY, Wang JJ, Tang BM, Dai LM, Yu SH, Chen RQ. Identification of transgenic agricultural products and foods using NIR spectroscopy and hyperspectral imaging: a review. Processes. 2023;11(3):651.

Article  CAS  Google Scholar 

Duan ZQ, Yang XL, Ji XK, Chen Y, Niu X, Guo AP, Zhu JK, Li F, Lang ZB, Zhao H. Cas12a-based on-site, rapid detection of genetically modified crops. J Integr Plant Biol. 2022;64(10):1856–9.

Article  PubMed  CAS  Google Scholar 

Soga K, Nakamura K, Egi T, Narushima J, Yoshiba S, Kishine M, Mano J, Kitta K, Takabatake R, Shibata N, Kondo K. Development and validation of a new robust detection method for low-content DNA using ΔΔCq-based real-time PCR with optimized standard plasmids as a control sample. Anal Chem. 2022;94(41):14475–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo MR, Xia YM, Chen FS, Hao LH, Xin Y, Liu BY. Development of an efficient dye-based qPCR system still functional for low levels of transgenic DNA in food products. Food Anal Method. 2023;16(2):445–58.

Article  Google Scholar 

Chu XL, Mei RB, Sui BH, Li K, Zhang C, Zhu DS. A novel nanosensor based on Mn2+-enhanced graphene oxide fluorescence switch and hybrid chain reaction signal amplification for highly sensi-tive detection of crop transgene. Chin J Anal Lab. 2023;42(12):1660–5.

CAS  Google Scholar 

Faheem A, Qin YQ, Nan WR, Hu YG. Advances in the immunoassays for detection of Bacillus thuringiensis crystalline toxins. J Agric Food Chem. 2021;69(36):10407–18.

Article  PubMed  CAS  Google Scholar 

Hu TT, Zheng KL, Su P, Yang Y, Li L, Meng ZY, Yang B, Wu LQ. Comparative study on protein quantitation by digital PCR with G2-EPSPS as an example. Microchem J. 2020;157:104954.

Article  CAS  Google Scholar 

Xu CX, Zhang X, Liu XQ, Liu Y, Hu XD, Zhong JF, Zhang CZ, Liu XJ. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Anal Biochem. 2016;512:70–7.

Article  PubMed  CAS  Google Scholar 

Székács A, Lauber É, Takács E, Darvas B. Detection of Cry1Ab toxin in the leaves of MON 810 transgenic maize. Anal Bioanal Chem. 2010;396(6):2203–11.

Article  PubMed  Google Scholar 

Gao HF, Wen LK, Tian J, Wu YH, Liu F, Lin YJ, Hua W, Wu G. A portable electrochemical immunosensor for highly sensitive point-of-care testing of genetically modified crops. Biosens Bioelectron. 2019;142:111504.

Article  PubMed  CAS  Google Scholar 

Zhang X, Liu Y, Zhang CZ, Wang Y, Xu CX, Liu XJ. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis (Bt) Cry1B toxin. Ecotox Environ Safe. 2012;81:84–90.

Article  CAS  Google Scholar 

Alarcon CM, Shan G, Layton DT, Bell TA, Whipkey S, Shillito RD. Application of DNA- and Protein-based detection methods in agricultural biotechnology. J Agr Food Chem. 2019;67(4):1019–28.

Article  CAS  Google Scholar 

Suh SM, Kim HJ, Shin MK, Hong SJ, Cha JE, Kim HY. Multiplex PCR detection method of genetically modified canola event (MON94100, LBFLFK, and NS-B50027-4) combined with capillary electrophoresis. Food Sci Biotechnol. 2024;33(3):637–43.

Article  PubMed  CAS  Google Scholar 

Kumar R. Development of dipsticks for simultaneous detection of Vip3A and Cry1Ab/Cry1Ac transgenic proteins. J AOAC Int. 2012;95(4):1131–7.

Article  PubMed  CAS  Google Scholar 

Huang X, Zhai CC, You QM, Chen HJ. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening. Anal Bioanal Chem. 2014;406(17):4243–9.

Article  PubMed  CAS  Google Scholar 

Wang R, Wu J, Zhang F, Wang L, Ji F. On-point detection of GM rice in 20 minutes with pullulan as CPA acceleration additive. Anal Methods. 2014;6(23):9198–201.

Article  Google Scholar 

Cheng N, Shang Y, Xu YC, Zhang L, Luo YB, Huang KL, Xu WT. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens Bioelectron. 2017;91:408–16.

Article  PubMed  CAS  Google Scholar 

Li K, Luo YB, Huang KL, Yang ZS, Wan YS, Xu WT. Single universal primer recombinase polymerase amplification-based lateral flow biosensor (SUP-RPA-LFB) for multiplex detection of genetically modified maize. Anal Chim Acta. 2020;1127:217–24.

Article  PubMed  CAS  Google Scholar 

Wang XM, Teng D, Guan QF, Tian F, Wang JH. Detection of roundup ready soybean by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Food Control. 2013;29(1):213–20.

Article  CAS  Google Scholar 

Kolm C, Mach RL, Krska R, Brunner K. A rapid DNA lateral flow test for the detection of transgenic maize by isothermal amplification of the 35S promoter. Anal Methods. 2014;7(1):129–34.

Article  Google Scholar 

Gao W, Tian JJ, Huang KL, Yang ZS, Xu WT, Luo YB. Ultrafast, universal and visual screening of dual genetically modified elements based on dual super PCR and a lateral flow biosensor. Food Chem. 2019;279:246–51.

Article  PubMed  CAS  Google Scholar 

Liu H, Wang JB, Li P, Bai L, Jia JW, Pan AH, Long XQ, Cui WD, Tang XM. Rapid detection of P-35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip. Food Control. 2020;107:106775.

Article  CAS  Google Scholar 

Wang XF, Chen Y, Chen XY, Peng C, Wang L, Xu XL, Wu J, Wei W, Xu JF. A highly integrated system with rapid DNA extraction, recombinase polymerase amplification, and lateral flow biosensor for on-site detection of genetically modified crops. Anal Chim Acta. 2020;1109:158–68.

Article  PubMed  CAS  Google Scholar 

Li ST, Tian JJ, Zhu LJ, Huang KL, Chu HS, Xu WT. Functional nucleic acid lateral flow magnetic biosensor based on blocking the super PCR and magnetic test strip for rapid detection of genetically modified maize MON810†. Anal Chim Acta. 2022;1202:339660.

Article  PubMed  CAS  Google Scholar 

Majdinasab M, Badea M, Marty JL. Aptamer-based lateral flow assays: current trends in clinical diagnostic rapid tests. Pharmaceuticals. 2022;15(1):90.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen AL, Yang SM. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015;71:230–42.

Article  PubMed  CAS  Google Scholar 

Ahmad Raston NH, Nguyen VT, Gu MB. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens Bioelectron. 2017;93:21–5.

Article  PubMed  CAS  Google Scholar 

Mermiga E, Pagkali V, Kokkinos C, Economou A. An aptamer-based lateral flow biosensor for low-cost, rapid and instrument-free detection of ochratoxin a in food samples. Molecules. 2023;28(24):8135.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao GL, Zhang Y, Sun DN, Yan SL, Wen YH, Wang YX, Li GS, Liu HT, Li JH, Song ZH. Recent advances in molecularly imprinted polymers for antibiotic analysis. Molecules. 2023;28(1):335.

Article 

Comments (0)

No login
gif