Campisi, J. and Vijg, J., Does damage to DNA and other macromolecules play a role in aging? If so, how?, J. Gerontol. A Biol. Sci. Med. Sci., 2009, vol. 64, no. 2, pp. 175–188. https://doi.org/10.1093/gerona/gln065
Article PubMed CAS Google Scholar
Moskalev, A.A., Shaposhnikov, M.V., Plyusnina, E.N., et al., The role of DNA damage and repair in aging through the prism of Koch-like criteria, Ageing Res. Rev., 2013, vol. 12, no. 2, pp. 661–684. https://doi.org/10.1016/j.arr.2012.02.001
Article PubMed CAS Google Scholar
Proshkina, E.N., Solovev, I.A., Shaposhnikov, M.V., and Moskalev, A.A., Key molecular mechanisms of aging, biomarkers, and potential interventions, Mol. Biol. (Moscow), 2020, vol. 54, no. 6, pp. 883–921. https://doi.org/10.31857/S0026898420060099
Article PubMed CAS Google Scholar
McGinnis, G.R. and Young, M.E., Circadian regulation of metabolic homeostasis: Causes and consequences, Nat. Sci. Sleep, 2016, vol. 8, pp. 163–180. https://doi.org/10.2147/nss.S78946
Article PubMed PubMed Central Google Scholar
Giebultowicz, J.M., Circadian regulation of metabolism and healthspan in Drosophila, Free Radic. Biol. Med., 2018, vol. 119, pp. 62–68. https://doi.org/10.1016/j.freeradbiomed.2017.12.025
Article PubMed CAS Google Scholar
Sancar, A., Lindsey-Boltz, L.A., Kang, T.H., et al., Circadian clock control of the cellular response to DNA damage, FEBS Lett., 2010, vol. 584, no. 12, pp. 2618–2625. https://doi.org/10.1016/j.febslet.2010.03.017
Article PubMed PubMed Central CAS Google Scholar
Krishnan, N., Davis, A.J., and Giebultowicz, J.M., Circadian regulation of response to oxidative stress in Drosophila melanogaster, Biochem. Biophys. Res. Commun., 2008, vol. 374, no. 2, pp. 299–303. https://doi.org/10.1016/j.bbrc.2008.07.011
Article PubMed PubMed Central CAS Google Scholar
Patel, S.A., Velingkaar, N.S., and Kondratov, R.V., Transcriptional control of antioxidant defense by the circadian clock, Antioxid. Redox. Signal., 2014, vol. 20, no. 18, pp. 2997–3006. https://doi.org/10.1089/ars.2013.5671
Article PubMed PubMed Central CAS Google Scholar
Qureshi, I.A. and Mehler, M.F., Epigenetics of sleep and chronobiology, Curr. Neurol. Neurosci. Rep., 2014, vol. 14, no. 3, p. 432. https://doi.org/10.1007/s11910-013-0432-6
Article PubMed PubMed Central CAS Google Scholar
Chen, W.D., Wen, M.S., Shie, S.S., et al., The circadian rhythm controls telomeres and telomerase activity, Biochem. Biophys. Res. Commun., 2014, vol. 451, no. 3, pp. 408–414. https://doi.org/10.1016/j.bbrc.2014.07.138
Article PubMed CAS Google Scholar
Hardin, P.E., Molecular genetic analysis of circadian timekeeping in Drosophila, Adv. Genet., 2011, vol. 74, pp. 141–173. https://doi.org/10.1016/B978-0-12-387690-4.00005-2
Article PubMed CAS Google Scholar
Lim, C., Chung, B.Y., Pitman, J.L., et al., Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila, Curr. Biol., 2007, vol. 17, no. 12, pp. 1082–1089. https://doi.org/10.1016/j.cub.2007.05.039
Article PubMed PubMed Central CAS Google Scholar
Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., et al., vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock, Cell, 2003, vol. 112, no. 3, pp. 329–341. https://doi.org/10.1016/s0092-8674(03)00074-6
Article PubMed CAS Google Scholar
Katewa, S.D., Akagi, K., Bose, N., et al., Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila, Cell Metab., 2016, vol. 23, no. 1, pp. 143–154. https://doi.org/10.1016/j.cmet.2015.10.014
Article PubMed CAS Google Scholar
Xu, K., Zheng, X., and Sehgal, A., Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila, Cell Metab., 2008, vol. 8, no. 4, pp. 289–300. https://doi.org/10.1016/j.cmet.2008.09.006
Article PubMed PubMed Central CAS Google Scholar
Yang, Z., Kim, H., Ali, A., Zheng, Z., and Zhang, K., Interaction between stress responses and circadian metabolism in metabolic disease, Liver Res., 2017, vol. 1, no. 3, pp. 156–162. https://doi.org/10.1016/j.livres.2017.11.002
Solovyov, I.A., Dobrovol’skaya, E.V., and Moskalev, A.A., Genetic control of circadian rhythms and aging, Russ. J. Genet., 2016, vol. 52, no. 4, pp. 343–361. https://doi.org/10.1134/s1022795416040104
Giebultowicz, J.M. and Long, D.M., Ageing and circadian rhythms, Curr. Opin. Insect Sci., 2015, vol. 7, pp. 82–86. https://doi.org/10.1016/j.cois.2015.03.001
Article PubMed PubMed Central Google Scholar
Antoch, M.P., Kondratov, R.V., and Takahashi, J.S., Circadian clock genes as modulators of sensitivity to genotoxic stress, Cell Cycle, 2005, vol. 4, no. 7, pp. 901–907. https://doi.org/10.4161/cc.4.7.1792
Article PubMed CAS Google Scholar
Patke, A., Young, M.W., and Axelrod, S., Molecular mechanisms and physiological importance of circadian rhythms, Nat. Rev. Mol. Cell Biol., 2020, vol. 21, no. 2, pp. 67–84. https://doi.org/10.1038/s41580-019-0179-2
Article PubMed CAS Google Scholar
Luo, W., Chen, W.F., Yue, Z., et al., Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations, Aging Cell, 2012, vol. 11, no. 3, pp. 428–438. https://doi.org/10.1111/j.1474-9726.2012.00800.x
Article PubMed CAS Google Scholar
Dobrovolskaya, E.V., Solovev, I.A., Proshkina, E.N., and Moskalev, A.A., Effects of genes overactivation of circadian rhythms in different tissues to stress resistance and longevity of Drosophila melanogaster, Theor. Appl. Ecol., 2016, no. 3, pp. 32–40. https://doi.org/10.25750/1995-4301-2016-3-032-040
Emery, P., So, W.V., Kaneko, M., Hall, J.C., and Rosbash, M., CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity, Cell, 1998, vol. 95, no. 5, pp. 669–679. https://doi.org/10.1016/s0092-8674(00)81637-2
Article PubMed CAS Google Scholar
Stoleru, D., Nawathean, P., Fernández, M.P., et al., The Drosophila circadian network is a seasonal timer, Cell, 2007, vol. 129, no. 1, pp. 207–219. https://doi.org/10.1016/j.cell.2007.02.038
Article PubMed CAS Google Scholar
Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H., A conditional tissue-specific transgene expression system using inducible GAL4, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 22, pp. 12596–12601. https://doi.org/10.1073/pnas.221303298
Article PubMed PubMed Central CAS Google Scholar
Landis, G.N., Salomon, M.P., Keroles, D., et al., The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila, Aging (Albany, New York), 2015, vol. 7, no. 1, pp. 53–69. https://doi.org/10.18632/aging.100721
Shaposhnikov, M.V., Guvatova, Z.G., Zemskaya, N.V., et al., Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions, Commun. Biol., 2022, vol. 5, no. 1, p. 566. https://doi.org/10.1038/s42003-022-03524-4
Article PubMed PubMed Central CAS Google Scholar
Han, S.K., Kwon, H.C., Yang, J.S., Kim, S., and Lee, S.V., OASIS portable: User-friendly offline suite for secure survival analysis, Mol. Cells, 2024, vol. 47, no. 2, p. 100011. https://doi.org/10.1016/j.mocell.2024.100011
Comments (0)