Intestinal Overexpression of Circadian Clock Genes Modulates Lifespan and Thermotolerance in Male

Campisi, J. and Vijg, J., Does damage to DNA and other macromolecules play a role in aging? If so, how?, J. Gerontol. A Biol. Sci. Med. Sci., 2009, vol. 64, no. 2, pp. 175–188. https://doi.org/10.1093/gerona/gln065

Article  PubMed  CAS  Google Scholar 

Moskalev, A.A., Shaposhnikov, M.V., Plyusnina, E.N., et al., The role of DNA damage and repair in aging through the prism of Koch-like criteria, Ageing Res. Rev., 2013, vol. 12, no. 2, pp. 661–684. https://doi.org/10.1016/j.arr.2012.02.001

Article  PubMed  CAS  Google Scholar 

Proshkina, E.N., Solovev, I.A., Shaposhnikov, M.V., and Moskalev, A.A., Key molecular mechanisms of aging, biomarkers, and potential interventions, Mol. Biol. (Moscow), 2020, vol. 54, no. 6, pp. 883–921. https://doi.org/10.31857/S0026898420060099

Article  PubMed  CAS  Google Scholar 

McGinnis, G.R. and Young, M.E., Circadian regulation of metabolic homeostasis: Causes and consequences, Nat. Sci. Sleep, 2016, vol. 8, pp. 163–180. https://doi.org/10.2147/nss.S78946

Article  PubMed  PubMed Central  Google Scholar 

Giebultowicz, J.M., Circadian regulation of metabolism and healthspan in Drosophila, Free Radic. Biol. Med., 2018, vol. 119, pp. 62–68. https://doi.org/10.1016/j.freeradbiomed.2017.12.025

Article  PubMed  CAS  Google Scholar 

Sancar, A., Lindsey-Boltz, L.A., Kang, T.H., et al., Circadian clock control of the cellular response to DNA damage, FEBS Lett., 2010, vol. 584, no. 12, pp. 2618–2625. https://doi.org/10.1016/j.febslet.2010.03.017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Krishnan, N., Davis, A.J., and Giebultowicz, J.M., Circadian regulation of response to oxidative stress in Drosophila melanogaster, Biochem. Biophys. Res. Commun., 2008, vol. 374, no. 2, pp. 299–303. https://doi.org/10.1016/j.bbrc.2008.07.011

Article  PubMed  PubMed Central  CAS  Google Scholar 

Patel, S.A., Velingkaar, N.S., and Kondratov, R.V., Transcriptional control of antioxidant defense by the circadian clock, Antioxid. Redox. Signal., 2014, vol. 20, no. 18, pp. 2997–3006. https://doi.org/10.1089/ars.2013.5671

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qureshi, I.A. and Mehler, M.F., Epigenetics of sleep and chronobiology, Curr. Neurol. Neurosci. Rep., 2014, vol. 14, no. 3, p. 432. https://doi.org/10.1007/s11910-013-0432-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, W.D., Wen, M.S., Shie, S.S., et al., The circadian rhythm controls telomeres and telomerase activity, Biochem. Biophys. Res. Commun., 2014, vol. 451, no. 3, pp. 408–414. https://doi.org/10.1016/j.bbrc.2014.07.138

Article  PubMed  CAS  Google Scholar 

Hardin, P.E., Molecular genetic analysis of circadian timekeeping in Drosophila, Adv. Genet., 2011, vol. 74, pp. 141–173. https://doi.org/10.1016/B978-0-12-387690-4.00005-2

Article  PubMed  CAS  Google Scholar 

Lim, C., Chung, B.Y., Pitman, J.L., et al., Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila, Curr. Biol., 2007, vol. 17, no. 12, pp. 1082–1089. https://doi.org/10.1016/j.cub.2007.05.039

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., et al., vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock, Cell, 2003, vol. 112, no. 3, pp. 329–341. https://doi.org/10.1016/s0092-8674(03)00074-6

Article  PubMed  CAS  Google Scholar 

Katewa, S.D., Akagi, K., Bose, N., et al., Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila, Cell Metab., 2016, vol. 23, no. 1, pp. 143–154. https://doi.org/10.1016/j.cmet.2015.10.014

Article  PubMed  CAS  Google Scholar 

Xu, K., Zheng, X., and Sehgal, A., Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila, Cell Metab., 2008, vol. 8, no. 4, pp. 289–300. https://doi.org/10.1016/j.cmet.2008.09.006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang, Z., Kim, H., Ali, A., Zheng, Z., and Zhang, K., Interaction between stress responses and circadian metabolism in metabolic disease, Liver Res., 2017, vol. 1, no. 3, pp. 156–162. https://doi.org/10.1016/j.livres.2017.11.002

Article  PubMed  Google Scholar 

Solovyov, I.A., Dobrovol’skaya, E.V., and Moskalev, A.A., Genetic control of circadian rhythms and aging, Russ. J. Genet., 2016, vol. 52, no. 4, pp. 343–361. https://doi.org/10.1134/s1022795416040104

Article  CAS  Google Scholar 

Giebultowicz, J.M. and Long, D.M., Ageing and circadian rhythms, Curr. Opin. Insect Sci., 2015, vol. 7, pp. 82–86. https://doi.org/10.1016/j.cois.2015.03.001

Article  PubMed  PubMed Central  Google Scholar 

Antoch, M.P., Kondratov, R.V., and Takahashi, J.S., Circadian clock genes as modulators of sensitivity to genotoxic stress, Cell Cycle, 2005, vol. 4, no. 7, pp. 901–907. https://doi.org/10.4161/cc.4.7.1792

Article  PubMed  CAS  Google Scholar 

Patke, A., Young, M.W., and Axelrod, S., Molecular mechanisms and physiological importance of circadian rhythms, Nat. Rev. Mol. Cell Biol., 2020, vol. 21, no. 2, pp. 67–84. https://doi.org/10.1038/s41580-019-0179-2

Article  PubMed  CAS  Google Scholar 

Luo, W., Chen, W.F., Yue, Z., et al., Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations, Aging Cell, 2012, vol. 11, no. 3, pp. 428–438. https://doi.org/10.1111/j.1474-9726.2012.00800.x

Article  PubMed  CAS  Google Scholar 

Dobrovolskaya, E.V., Solovev, I.A., Proshkina, E.N., and Moskalev, A.A., Effects of genes overactivation of circadian rhythms in different tissues to stress resistance and longevity of Drosophila melanogaster, Theor. Appl. Ecol., 2016, no. 3, pp. 32–40. https://doi.org/10.25750/1995-4301-2016-3-032-040

Emery, P., So, W.V., Kaneko, M., Hall, J.C., and Rosbash, M., CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity, Cell, 1998, vol. 95, no. 5, pp. 669–679. https://doi.org/10.1016/s0092-8674(00)81637-2

Article  PubMed  CAS  Google Scholar 

Stoleru, D., Nawathean, P., Fernández, M.P., et al., The Drosophila circadian network is a seasonal timer, Cell, 2007, vol. 129, no. 1, pp. 207–219. https://doi.org/10.1016/j.cell.2007.02.038

Article  PubMed  CAS  Google Scholar 

Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H., A conditional tissue-specific transgene expression system using inducible GAL4, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 22, pp. 12596–12601. https://doi.org/10.1073/pnas.221303298

Article  PubMed  PubMed Central  CAS  Google Scholar 

Landis, G.N., Salomon, M.P., Keroles, D., et al., The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila, Aging (Albany, New York), 2015, vol. 7, no. 1, pp. 53–69. https://doi.org/10.18632/aging.100721

Article  CAS  Google Scholar 

Shaposhnikov, M.V., Guvatova, Z.G., Zemskaya, N.V., et al., Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions, Commun. Biol., 2022, vol. 5, no. 1, p. 566. https://doi.org/10.1038/s42003-022-03524-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han, S.K., Kwon, H.C., Yang, J.S., Kim, S., and Lee, S.V., OASIS portable: User-friendly offline suite for secure survival analysis, Mol. Cells, 2024, vol. 47, no. 2, p. 100011. https://doi.org/10.1016/j.mocell.2024.100011

Article  PubMed 

Comments (0)

No login
gif