The impact of supramolecular self-association of organocatalysts on catalytic performance

Xiang, S.-H. & Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 11, 3786 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkessel, A. & Gröger, H. (eds) Asymmetric Organocatalysis (Wiley, 2005).

Albrecht, L., Albrecht, A. & Dell’Amico, L. Asymmetric Organocatalysis: New Strategies, Catalysts, and Opportunities (Wiley, 2023).

Dalko, P. I. (ed.) Comprehensive Enantioselective Organocatalysis (Wiley, 2013).

Wende, R. C. & Schreiner, P. R. Evolution of asymmetric organocatalysis: multi-and retrocatalysis. Green. Chem. 14, 1821–1849 (2012).

Article  CAS  Google Scholar 

García Mancheño, O. & Waser, M. Recent developments and trends in asymmetric organocatalysis. Eur. J. Org. Chem. 26, e202200950 (2023).

Article  Google Scholar 

List, B. & Maruoka, K. (eds) Science of Synthesis, Asymmetric Organocatalysis (Thieme, 2012).

Dilanas, M. E. et al. Interview with Prof. Dr. Benjamin List: Nobel Laureate in chemistry 2021. Chem. Eur. J. 28, e202201236 (2022).

Article  CAS  PubMed  Google Scholar 

Gimeno, M. C. & Herrera, R. P. Hydrogen bonding and internal or external Lewis or Brønsted acid assisted (thio) urea catalysts. Eur. J. Org. Chem. 2020, 1057–1068 (2020).

Article  CAS  Google Scholar 

Volz, N. & Clayden, J. The urea renaissance. Angew. Chem. Int. Edn 50, 12148–12155 (2011).

Article  CAS  Google Scholar 

Schon, E. M., Marques-Lopez, E., Herrera, R. P., Aleman, C. & Diaz Diaz, D. Exploiting molecular self-assembly: from urea-based organocatalysts to multifunctional supramolecular gels. Chem. Eur. J. 20, 10720–10731 (2014).

Article  PubMed  Google Scholar 

Yokoya, M., Kimura, S. & Yamanaka, M. Urea derivatives as functional molecules: supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chem. Eur. J. 27, 5601–5614 (2021).

Article  CAS  PubMed  Google Scholar 

Grayson, M. N. & Houk, K. N. Cinchona urea-catalyzed asymmetric sulfa-Michael reactions: the Bronsted acid-hydrogen bonding model. J. Am. Chem. Soc. 138, 9041–9044 (2016).

Article  CAS  PubMed  Google Scholar 

Revelou, P., Kokotos, C. G. & Moutevelis-Minakakis, P. Novel prolinamide-ureas as organocatalysts for the asymmetric aldol reaction. Tetrahedron 68, 8732–8738 (2012).

Article  CAS  Google Scholar 

Merino, P., Marqués-López, E., Tejero, T. & Herrera, R. P. Organocatalyzed Strecker reactions. Tetrahedron 65, 1219–1234 (2009).

Article  CAS  Google Scholar 

Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Edn 45, 1520–1543 (2006).

Article  CAS  Google Scholar 

Serdyuk, O. V., Heckel, C. M. & Tsogoeva, S. B. Bifunctional primary amine-thioureas in asymmetric organocatalysis. Org. Biomol. Chem. 11, 7051–7071 (2013).

Article  CAS  PubMed  Google Scholar 

Bendelsmith, A. J., Kim, S. C., Wasa, M., Roche, S. P. & Jacobsen, E. N. Enantioselective synthesis of α-allyl amino esters via hydrogen-bond-donor catalysis. J. Am. Chem. Soc. 141, 11414–11419 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strassfeld, D. A., Wickens, Z. K., Picazo, E. & Jacobsen, E. N. Highly enantioselective, hydrogen-bond-donor catalyzed additions to oxetanes. J. Am. Chem. Soc. 142, 9175–9180 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 32, 289–296 (2003).

Article  CAS  PubMed  Google Scholar 

Connon, S. J. Organocatalysis mediated by (thio)urea derivatives. Chem. Eur. J. 12, 5419–5427 (2006).

Article  CAS  Google Scholar 

Fang, X. & Wang, C.-J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors. Chem. Commun. 51, 1185–1197 (2015).

Article  CAS  Google Scholar 

Parvin, T., Yadav, R. & Choudhury, L. H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem. 18, 5513–5532 (2020).

Article  CAS  PubMed  Google Scholar 

Takemoto, Y. Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org. Biomol. Chem. 3, 4299–4306 (2005).

Article  CAS  PubMed  Google Scholar 

Waser, M., Winter, M. & Mairhofer, C. (Thio)urea containing chiral ammonium salt catalysts. Chem. Rec. 23, e202200198 (2023).

Article  CAS  PubMed  Google Scholar 

Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis — what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).

Article  CAS  PubMed  Google Scholar 

Koutoulogenis, G., Kaplaneris, N. & Kokotos, C. G. Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers. Beilstein J. Org. Chem. 12, 462–495 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aleman, J., Parra, A., Jiang, H. & Jorgensen, K. A. Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem. Eur. J. 17, 6890–6899 (2011).

Article  CAS  PubMed  Google Scholar 

Chauhan, P., Mahajan, S., Kaya, U., Hack, D. & Enders, D. Bifunctional amine-squaramides: powerful hydrogen-bonding organocatalysts for asymmetric domino/cascade reactions. Adv. Synth. Catal. 357, 253–281 (2015).

Article  CAS  Google Scholar 

Han, X., Zhou, H.-B. & Dong, C. Applications of chiral squaramides: from asymmetric organocatalysis to biologically active compounds. Chem. Rec. 16, 897–906 (2016).

Article  CAS  PubMed  Google Scholar 

Zhao, B.-L., Li, J.-H. & Du, D.-M. Squaramide-catalyzed asymmetric reactions. Chem. Rec. 17, 994–1018 (2017).

Article  CAS  PubMed  Google Scholar 

Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C. & Elmes, R. B. P. The versatility of squaramides: from supramolecular chemistry to chemical biology. Chem 5, 1398–1485 (2019).

Article  CAS  Google Scholar 

Biswas, A., Ghosh, A., Shankhdhar, R. & Chatterjee, I. Squaramide catalyzed asymmetric synthesis of five-and six-membered rings. Asian J. Org. Chem. 10, 1345–1376 (2021).

Article  CAS  Google Scholar 

Popova, E. et al. Squaramide-based catalysts in organic synthesis. Russ. J. Gen. Chem. 92, 287–347 (2022).

Article  CAS  Google Scholar 

Storer, R. I., Aciro, C. & Jones, L. H. Squaramides: physical properties, synthesis and applications. Chem. Soc. Rev. 40, 2330–2346 (2011).

Article  PubMed  Google Scholar 

Portolani, C., Centonze, G., Righi, P. & Bencivenni, G. Role of cinchona alkaloids in the enantio- and diastereoselective synthesis of axially chiral compounds. Acc. Chem. Res. 55, 3551–3571 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanriver, G., Dedeoglu, B., Catak, S. & Aviyente, V. Computational studies on cinchona alkaloid-catalyzed asymmetric organic reactions. Acc. Chem. Res. 49, 1250–1262 (2016).

Article  CAS  PubMed  Google Scholar 

Duan, J. & Li, P. Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: rec

Comments (0)

No login
gif