Xiang, S.-H. & Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 11, 3786 (2020).
Article CAS PubMed PubMed Central Google Scholar
Berkessel, A. & Gröger, H. (eds) Asymmetric Organocatalysis (Wiley, 2005).
Albrecht, L., Albrecht, A. & Dell’Amico, L. Asymmetric Organocatalysis: New Strategies, Catalysts, and Opportunities (Wiley, 2023).
Dalko, P. I. (ed.) Comprehensive Enantioselective Organocatalysis (Wiley, 2013).
Wende, R. C. & Schreiner, P. R. Evolution of asymmetric organocatalysis: multi-and retrocatalysis. Green. Chem. 14, 1821–1849 (2012).
García Mancheño, O. & Waser, M. Recent developments and trends in asymmetric organocatalysis. Eur. J. Org. Chem. 26, e202200950 (2023).
List, B. & Maruoka, K. (eds) Science of Synthesis, Asymmetric Organocatalysis (Thieme, 2012).
Dilanas, M. E. et al. Interview with Prof. Dr. Benjamin List: Nobel Laureate in chemistry 2021. Chem. Eur. J. 28, e202201236 (2022).
Article CAS PubMed Google Scholar
Gimeno, M. C. & Herrera, R. P. Hydrogen bonding and internal or external Lewis or Brønsted acid assisted (thio) urea catalysts. Eur. J. Org. Chem. 2020, 1057–1068 (2020).
Volz, N. & Clayden, J. The urea renaissance. Angew. Chem. Int. Edn 50, 12148–12155 (2011).
Schon, E. M., Marques-Lopez, E., Herrera, R. P., Aleman, C. & Diaz Diaz, D. Exploiting molecular self-assembly: from urea-based organocatalysts to multifunctional supramolecular gels. Chem. Eur. J. 20, 10720–10731 (2014).
Yokoya, M., Kimura, S. & Yamanaka, M. Urea derivatives as functional molecules: supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chem. Eur. J. 27, 5601–5614 (2021).
Article CAS PubMed Google Scholar
Grayson, M. N. & Houk, K. N. Cinchona urea-catalyzed asymmetric sulfa-Michael reactions: the Bronsted acid-hydrogen bonding model. J. Am. Chem. Soc. 138, 9041–9044 (2016).
Article CAS PubMed Google Scholar
Revelou, P., Kokotos, C. G. & Moutevelis-Minakakis, P. Novel prolinamide-ureas as organocatalysts for the asymmetric aldol reaction. Tetrahedron 68, 8732–8738 (2012).
Merino, P., Marqués-López, E., Tejero, T. & Herrera, R. P. Organocatalyzed Strecker reactions. Tetrahedron 65, 1219–1234 (2009).
Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Edn 45, 1520–1543 (2006).
Serdyuk, O. V., Heckel, C. M. & Tsogoeva, S. B. Bifunctional primary amine-thioureas in asymmetric organocatalysis. Org. Biomol. Chem. 11, 7051–7071 (2013).
Article CAS PubMed Google Scholar
Bendelsmith, A. J., Kim, S. C., Wasa, M., Roche, S. P. & Jacobsen, E. N. Enantioselective synthesis of α-allyl amino esters via hydrogen-bond-donor catalysis. J. Am. Chem. Soc. 141, 11414–11419 (2019).
Article CAS PubMed PubMed Central Google Scholar
Strassfeld, D. A., Wickens, Z. K., Picazo, E. & Jacobsen, E. N. Highly enantioselective, hydrogen-bond-donor catalyzed additions to oxetanes. J. Am. Chem. Soc. 142, 9175–9180 (2020).
Article CAS PubMed PubMed Central Google Scholar
Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 32, 289–296 (2003).
Article CAS PubMed Google Scholar
Connon, S. J. Organocatalysis mediated by (thio)urea derivatives. Chem. Eur. J. 12, 5419–5427 (2006).
Fang, X. & Wang, C.-J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors. Chem. Commun. 51, 1185–1197 (2015).
Parvin, T., Yadav, R. & Choudhury, L. H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem. 18, 5513–5532 (2020).
Article CAS PubMed Google Scholar
Takemoto, Y. Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org. Biomol. Chem. 3, 4299–4306 (2005).
Article CAS PubMed Google Scholar
Waser, M., Winter, M. & Mairhofer, C. (Thio)urea containing chiral ammonium salt catalysts. Chem. Rec. 23, e202200198 (2023).
Article CAS PubMed Google Scholar
Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis — what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).
Article CAS PubMed Google Scholar
Koutoulogenis, G., Kaplaneris, N. & Kokotos, C. G. Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers. Beilstein J. Org. Chem. 12, 462–495 (2016).
Article CAS PubMed PubMed Central Google Scholar
Aleman, J., Parra, A., Jiang, H. & Jorgensen, K. A. Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem. Eur. J. 17, 6890–6899 (2011).
Article CAS PubMed Google Scholar
Chauhan, P., Mahajan, S., Kaya, U., Hack, D. & Enders, D. Bifunctional amine-squaramides: powerful hydrogen-bonding organocatalysts for asymmetric domino/cascade reactions. Adv. Synth. Catal. 357, 253–281 (2015).
Han, X., Zhou, H.-B. & Dong, C. Applications of chiral squaramides: from asymmetric organocatalysis to biologically active compounds. Chem. Rec. 16, 897–906 (2016).
Article CAS PubMed Google Scholar
Zhao, B.-L., Li, J.-H. & Du, D.-M. Squaramide-catalyzed asymmetric reactions. Chem. Rec. 17, 994–1018 (2017).
Article CAS PubMed Google Scholar
Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C. & Elmes, R. B. P. The versatility of squaramides: from supramolecular chemistry to chemical biology. Chem 5, 1398–1485 (2019).
Biswas, A., Ghosh, A., Shankhdhar, R. & Chatterjee, I. Squaramide catalyzed asymmetric synthesis of five-and six-membered rings. Asian J. Org. Chem. 10, 1345–1376 (2021).
Popova, E. et al. Squaramide-based catalysts in organic synthesis. Russ. J. Gen. Chem. 92, 287–347 (2022).
Storer, R. I., Aciro, C. & Jones, L. H. Squaramides: physical properties, synthesis and applications. Chem. Soc. Rev. 40, 2330–2346 (2011).
Portolani, C., Centonze, G., Righi, P. & Bencivenni, G. Role of cinchona alkaloids in the enantio- and diastereoselective synthesis of axially chiral compounds. Acc. Chem. Res. 55, 3551–3571 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tanriver, G., Dedeoglu, B., Catak, S. & Aviyente, V. Computational studies on cinchona alkaloid-catalyzed asymmetric organic reactions. Acc. Chem. Res. 49, 1250–1262 (2016).
Article CAS PubMed Google Scholar
Duan, J. & Li, P. Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: rec
Comments (0)