Reproducible meningioma grading across multi-center MRI protocols via hybrid radiomic and deep learning features

Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas RV (2018) An overview of meningiomas. Futur Oncol 14(21):2161–2177

CAS  Google Scholar 

Perry A (2018) Meningiomas. Practical surgical neuropathology: a diagnostic approach. In: Perry A, Brat DJ (eds) Elsevier, pp 259–298. https://doi.org/10.1016/B978-0-323-44941-0.00013-8

Zee CS, Chen T, Hinton DR, Tan M, Segall HD, Apuzzo MLJ (1995) Magnetic resonance imaging of cystic meningiomas and its surgical implications. Neurosurgery 36(3):482–488

PubMed  CAS  Google Scholar 

Yao A, Pain M, Balchandani P, Shrivastava RK (2018) Can MRI predict meningioma consistency? A correlation with tumor pathology and systematic review. Neurosurg Rev 41:745–753

PubMed  Google Scholar 

Nakano T, Asano K, Miura H, Itoh S, Suzuki S (2002) Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging 26(4):243–249

PubMed  Google Scholar 

Suzuki Y, Sugimoto T, Shibuya M, Sugita K, Patel SJ (1994) Meningiomas: correlation between MRI characteristics and operative findings including consistency. Acta Neurochir (Wien) 129:39–46

PubMed  CAS  Google Scholar 

Zimmerman RD, Fleming CA, Saint-Louis LA, Lee BC, Manning JJ, Deck MD (1985) Magnetic resonance imaging of meningiomas. Am J Neuroradiol 6(2):149–157

PubMed  PubMed Central  CAS  Google Scholar 

Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A et al (2024) The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology 310(2):e231319

PubMed  Google Scholar 

Salmanpour MR, Rezaeijo SM, Hosseinzadeh M, Rahmim A (2023) Deep versus handcrafted tensor radiomics features: prediction of survival in head and neck cancer using machine learning and fusion techniques. Diagnostics 13(10):1696

PubMed  PubMed Central  Google Scholar 

Fatan M, Hosseinzadeh M, Askari D, Sheikhi H, Rezaeijo SM, Salmanpour MR (2022) Fusion-based head and neck tumor segmentation and survival prediction using robust deep learning techniques and advanced hybrid machine learning systems BT - head and neck tumor segmentation and outcome prediction. In: Andrearczyk V, Oreiller V, Hatt M, Depeursinge A, editors. Cham: Springer International Publishing, p 211–23

AkbarnezhadSany E, EntezariZarch H, AlipoorKermani M, Shahin B, Cheki M, Karami A et al (2025) YOLOv8 outperforms traditional CNN models in mammography classification: insights from a Multi-Institutional dataset. Int J Imaging Syst Technol 35(1):e70008

Google Scholar 

Bijari S, Rezaeijo SM, Sayfollahi S, Rahimnezhad A, Heydarheydari S (2025) Development and validation of a robust MRI-based nomogram incorporating radiomics and deep features for preoperative glioma grading: a multi-center study. Quant Imaging Med Surg 15(2):1121138–1125138

Google Scholar 

Avanzo M, Wei L, Stancanello J, Vallieres M, Rao A, Morin O et al (2020) Machine and deep learning methods for radiomics. Med Phys 47(5):e185–202

PubMed  Google Scholar 

Li G, Li L, Li Y, Qian Z, Wu F, He Y et al (2022) An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 145(3):1151–1161

PubMed  PubMed Central  Google Scholar 

Brancato V, Cerrone M, Lavitrano M, Salvatore M, Cavaliere C (2022) A systematic review of the current status and quality of radiomics for glioma differential diagnosis. Cancers (Basel) 14(11):2731

PubMed  PubMed Central  CAS  Google Scholar 

Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139

PubMed  Google Scholar 

Salmanpour MR, Hosseinzadeh M, Akbari A, Borazjani K, Mojallal K, Askari D et al (2022) Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features. Medical imaging 2022: Computer-Aided diagnosis. SPIE, pp 648–653. https://doi.org/10.1117/12.2612998

Bijari S, Sayfollahi S, Mardokh-Rouhani S, Bijari S, Moradian S, Zahiri Z et al (2024) Radiomics and deep features: robust classification of brain hemorrhages and reproducibility analysis using a 3D autoencoder neural network. Bioengineering 11(7):643

PubMed  PubMed Central  Google Scholar 

Mahboubisarighieh A, Shahverdi H, Jafarpoor Nesheli S, Alipoor Kermani M, Niknam M, Torkashvand M et al (2024) Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis. Egypt J Radiol Nucl Med 55(1):1–12

Google Scholar 

Ayadi W, Elhamzi W, Charfi I, Atri M (2021) Deep CNN for brain tumor classification. Neural Process Lett 53:671–700

Google Scholar 

Chauhan R, Ghanshala KK, Joshi RC (2018) Convolutional neural network (CNN) for image detection and recognition. In: first international conference on secure cyber computing and communication (ICSCCC). IEEE, pp 278–82

Vankdothu R, Hameed MA, Fatima H (2022) A brain tumor identification and classification using deep learning based on CNN-LSTM method. Comput Electr Eng 101:107960

Google Scholar 

Bailo M, Gagliardi F, Boari N, Spina A, Piloni M, Castellano A et al (2023) Meningioma and other meningeal tumors. In: Rezaei N, Hanaei S (eds) Human brain and spinal cord tumors: from bench to bedside, vol 2. The path to bedside management. Springer, pp 73–97. https://doi.org/10.1007/978-3-031-23705-8

Nyalundja AD, Mugisha F, Karekezi C (2024) The natural history and treatment of meningiomas: an update. Semin Neurol 44(1):1–15

Hanna C Jr, Willman M, Cole D, Mehkri Y, Liu S, Willman J et al (2023) Review of meningioma diagnosis and management. Egypt J Neurosurg 38(1):16

Google Scholar 

Sofela AA, McGavin L, Whitfield PC, Hanemann CO (2021) Biomarkers for differentiating grade II meningiomas from grade I: a systematic review. Br J Neurosurg 35(6):696–702

PubMed  Google Scholar 

Shin HK, Park JH, Cho YH, Kim YH, Hong SH, Kim JH et al (2021) Risk factors for high-grade meningioma in brain and spine: systematic review and meta-analysis. World Neurosurg 151:e718–e730

PubMed  Google Scholar 

Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M (2024) Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 8(1):80

PubMed  PubMed Central  Google Scholar 

Al-Rahbi A, Al-Habsi T, Al-Suli A, Al-Saadi T (2025) Artificial intelligence use in diagnosis, grading, and segmentation of neuro-oncology: a narrative review. Egypt J Neurol Psychiatry Neurosurg 61(1):1–25

Google Scholar 

Navarro-Ballester A (2024) Artificial intelligence-driven radiological biomarkers: a narrative review of artificial intelligence in meningioma diagnosis. NeuroMarkers 2(1):100033

Akinci D’Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R et al (2024) Reproducibility of radiomics quality score: an intra-and inter-rater reliability study. Eur Radiol 34(4):2791–2804

PubMed  Google Scholar 

Placidi L, Gioscio E, Garibaldi C, Rancati T, Fanizzi A, Maestri D et al (2021) A multicentre evaluation of dosiomics features reproducibility, stability and sensitivity. Cancers (Basel) 13(15):3835

PubMed  Google Scholar 

Sunoqrot MRS, Selnæs KM, Sandsmark E, Langørgen S, Bertilsson H, Bathen TF et al (2021) The reproducibility of deep Learning-Based segmentation of the prostate gland and zones on T2-Weighted MR images. Diagnostics 11(9):1690

PubMed  PubMed Central  Google Scholar 

Baeßler B, Weiss K, Dos Santos DP (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a Phantom study. Invest Radiol 54(4):221–228

PubMed  Google Scholar 

Choe J, Lee SM, Do KH, Lee G, Lee JG, Lee SM et al (2019) Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 292(2):365–373

PubMed  Google Scholar 

Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L et al (2019) Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp 3(1):35

PubMed  PubMed Central  Google Scholar 

Park JE, Park SY, Kim HJ, Kim HS (2019) Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 20(7):1124–1137

PubMed  PubMed Central  Google Scholar 

Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J et al (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray‐level discretization, and reconstruction algorithms. J Appl Clin Med Phys 18(6):32–48

PubMed  PubMed Central  Google Scholar 

Zhao B, Tan Y, Tsai WY, Qi J, Xie C, Lu L et al (2016) Reproducibility of radiomics for Deciphering tumor phenotype with imaging. Sci Rep 6(1):23428

PubMed  PubMed Central  CAS  Google Scholar 

Pfaehler E, Zhovannik I, Wei L, Boellaard R, Dekker A, Monshouwer R et al (2021) A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Phys Imaging Radiat Oncol 20:69–75

PubMed  PubMed Central  Google Scholar 

Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102(4):1143–1158

PubMed  PubMed Central  Google Scholar 

Haarburger C, Müller-Franzes G, Weninger L, Kuhl C, Truhn D, Merhof D (2020) Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci Rep 10(1):12688

PubMed  PubMed Central  CAS  Google Scholar 

Jha AK, Mithun S, Jaiswar V, Sherkhane UB, Purandare NC, Prabhash K et al (2021) Repeatability and reproducibility study of radiomic features on a Phantom and human cohort. Sci Rep 11(1):2055

PubMed  PubMed Central  CAS  Google Scholar 

Salmanpour MR, Hosseinzadeh M, Rezaeijo SM, Uribe C, Rahmim A (2022) Robustness and reproducibility of radiomics features from fusions of PET-CT images. J Nucl Med 63 (suppl 2):3179

Hu Z, Yang Z, Zhang H, Vaios E, Lafata K, Yin FF et al (2022) A deep learning model with radiomics analysis integration for glioblastoma post-resection survival prediction. arXiv Prepr arXiv220305891

Zhang R, Wei Y, Shi F, Ren J, Zhou Q, Li W et al (2022) The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images. BMC Cancer 22(1):1118

PubMed  PubMed Central  CAS  Google Scholar 

Han W, Qin L, Bay C, Chen X, Yu KH, Miskin N et al (2020) Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. Am J Neuroradiol 41(1):40–48

PubMed  PubMed Central  CAS 

Comments (0)

No login
gif